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Abstract 
 

 Effective potential energy surfaces (PESs) are calculated for the nonadiabatic 

collision .  This calculation 

employed 1 2A′, 2 2A′, and 1 2A″ adiabatic PESs numerically calculated at the state-

averaged multiconfigurational self-consistent field (SA-MCSCF)/configuration 

interaction (CI) level for several values of the H2 bond length, H2 orientation angle, and 

boron distance.  The associated nonadiabatic coupling terms (NACTs) were calculated 

from the SA-MCSCF/CI wave functions using analytic gradient techniques.  A line 

integral through the NACTs was then used to determine the adiabatic-to-diabatic mixing 

angle required to transform from the 1 2A′ and 2 2A′ adiabatic basis to a corresponding 

diabatic basis.  When all nonadiabatic coupling terms between all electronic states are 

considered, the line integral is path independent.  However, only NACTs between the  

1 2A′ and 2 2A′ states were considered in these calculations, and the line integral was 

therefore path dependent.  The path dependence of the line integral was used to 

characterize the error introduced by employing a truncated set of adiabatic states.  A 

method for reducing the effect of this error through the use of symmetry derived 

boundary conditions was developed.  The resulting diabatic PESs were combined with 

the total B + H2 rotational kinetic energy and boron spin-orbit coupling to yield diabatic 

effective PESs.  The diabatic effective PESs were diagonalized to yield adiabatic 

effective PESs.  Diabatic effective PESs data was extracted for the equilibrium H2 bond 

length and used to calculate inelastic scattering matrix elements using the time dependent 
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channel packet method.  These matrix elements were compared previous results [D. E. 

Weeks et al., J. Chem. Phys. 125, 164301 (2006)] to observe the sensitivity of this 

calculation to the input electronic structure data. 
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THE EFFECTIVE POTENTIAL ENERGY SURFACES  

OF THE NONADIABATIC COLLISION 

 

 

I. Introduction 

 

In 1926 Erwin Schrödinger published his landmark paper introducing the wave 

equation which would later bear his name.1  Schrödinger’s equation elegantly reproduced 

the results achieved by Neils Bohr and others for the hydrogen-like atom and was quickly 

applied to other atomic/molecular systems.  However, progress on solving Schrödinger’s 

equation for systems more complex than the hydrogen-like atom stalled.  Like the many-

body problem in classical mechanics the resulting equations for an atomic/molecular 

system could not be solved analytically. 

One year after the Schrödinger equation was introduced, Born and Oppenheimer 

proposed that the dynamics of electrons could be treated separately from the dynamics of 

the nuclei in atoms and molecules.2, 3  This approximation was motivated by the fact that 

electrons move much faster than the more massive nuclei.  This approach to solving the 

Schrödinger equation is known as the Born-Oppenheimer approximation (BOA). 

Motivation 

Despite the utility of the BOA, in 1929, Dirac summarized the difficulties 

encountered early on when solving the Schrödinger equation for atomic and molecular 
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systems stating the following: “The underlying physical laws necessary for the 

mathematical theory of a large part of physics and the whole of chemistry are thus 

completely known, and the difficulty lies only in the fact that the exact application of 

these laws leads to equations much too complicated to be soluble.”  However, since the 

advent of computers, the BOA has become a standard tool for numerically solving the 

Schrödinger equation for atomic and molecular systems. 

In the BOA the positions of the nuclei are fixed by setting their kinetic energy 

operators to zero in the Hamiltonian.  The electron kinetic energy operators are retained.  

The resulting electronic Schrödinger equation is solved numerically yielding a complete 

Hilbert space of electronic eigenfunctions, and corresponding electronic energy 

eigenvalues.  The positions of the nuclei are then changed and a new electronic problem 

is solved.  This process is repeated for a variety of nuclear configurations using nuclear 

coordinates as parameters in the electronic Hamiltonian.  The resulting collection of 

ground state electronic energy eigenvalues as a function of nuclear coordinates is called 

the ground state potential energy surface (PES).  The numerical approaches to solving for 

these energies and wave functions include Hartree-Fock self-consistent field (HFSCF), 

configuration interaction (CI), and multiconfigurational self-consistent field methods.  In 

general all of these techniques are referred to as ab initio methods. 

After the electronic PESs and wave functions are calculated, the nuclear kinetic 

energy operators are re-introduced to the Hamiltonian.  The resulting nuclear/electronic 

Schrödinger equation is solved by first expanding the complete nuclear/electronic wave 

functions in terms of the electronic wave functions.  The coefficients of this expansion 

are solved by representing the nuclear/electronic Schrödinger equation in the electronic 
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basis.  This is called the adiabatic representation.  In this representation the Schrödinger 

equation has terms which couple electronic eigenstates.  The coupling terms are referred 

to as nonadiabatic coupling terms (NACTs).  The BOA ignores the NACTs creating a set 

of uncoupled equations equal to the number of electronic wave functions used to expand 

the nuclear/electronic wave functions.4  Under these conditions the nuclear dynamics for 

a given electronic eigenstate are influenced by a single PES and the system is said to 

behave adiabatically.  

The BOA ignores the NACTs whether they are significant or not.4  The NACTs 

can be large when the electronic eigenstates have a strong dependence on nuclear 

coordinates.  When these terms are significant the adiabatic representation produces a set 

of coupled equations.  Under these conditions the nuclear dynamics for a given electronic 

eigenstate depend on multiple PESs and the system is said to behave nonadiabatically.   

Nonadiabatic systems are common, especially for polyatomic systems.5  Over the 

past several decades, a great deal of research has been done to understand nonadiabatic 

systems.6  Nonadiabatic effects play an important role in the radiationless relaxation of 

excited electronic states and the photodissociation of molecules.7  These effects are 

recognized to play a critical role photobiochemical processed such as in photosynthesis in 

plants, vision, and the photochemistry of DNA.4  The ability to accurately model 

nonadiabatic molecular dynamics is applicable to many areas of active Air Force 

research.  These areas include the modeling of collisional transitions between atoms and 

molecules in diode-pumped alkali lasers (DPALs)8-10, and the modeling high energy 

density materials (HEDM) for explosives and fuel.11 
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Progress in modeling nonadiabatic systems has been slow due to the 

computational requirements they impose.  Using quantum mechanical formulations 12-18, 

current state-of-the-art calculations can only treat the nonadiabatic dynamics of systems 

with three to four atoms.  Beyond this, classical and semi-classical approximations19-25 

are employed to achieve results. 

This research uses a quantum mechanical treatment to explore the nonadiabatic 

effects encountered during the inelastic collision between a boron atom and a hydrogen 

molecule. The equation for this scattering event is given by 

Statement of Objectives 

 ( 1 ) 

In this interaction the boron starts in a 2P electronic state and is free to transition to a 

different 2P state.  The hydrogen molecule is restricted to its ground electronic state; 

however, it is free to make rotational and vibrational transitions. 

The interaction of atomic boron and molecular hydrogen has been the subject of 

many studies.11, 26-38  As stated in Weeks (2006)37, general interest in the interaction of 

atomic boron with molecular hydrogen stems in part from the high degree of collisional 

quenching that is observed when excited metal atoms, including boron, react with 

molecular hydrogen.39  Collisional studies of excited B(4p 2P) with H2 and D2 have also 

identified a significant isotope effect on reaction rates and indicate that nonadiabatic 

mechanisms may influence the experimentally observed distribution of molecular 

products.32, 33 Additional interest in the B+H2 system is derived from the B+H2 van der 

Waals complex observed in molecular beam experiments28, 34, 35 and in boron doped 

matrices of frozen H2.11, 31  Recent interest in the B + H2 system stems from efforts to 
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model the nonadiabatic molecular dynamics of the inelastic collision 

 which this work most directly extends.36, 37  The 

2P manifold of the B + H2 system also serves as a proxy for the excited states of DPALs. 

The research presented in this dissertation has five main aims.  First, all of the 

theory required to treat the interaction given by Eq. ( 1 ) is presented.  In this section the 

theory behind the BOA is presented and applied to the B + H2 system.  The method for 

solving the Schrödinger equation when the BOA breaks down is presented.  The specific 

case of an atom with a single valence electron in a p orbital interacting with a 

homonuclear diatomic molecule is treated.  This leads to the method for calculating 

effective potential energy surfaces for the B + H2 system.   Finally the scattering theory 

required for the calculation of scattering matrix elements using the Channel Packet 

Method (CPM)40-44 is presented.   

Second, ab initio calculations of the three adiabatic PESs corresponding to the 

boron 2P electronic states and associated NACTs are presented.  The adiabatic PESs for 

this work were calculated at the state-averaged multiconfigurational self-consistent field 

(SA-MCSCF)/configuration interaction (CI) level by Dr. David Yarkony at Johns 

Hopkins University.29, 45, 46  The NACTs were calculated from the SA-MCSCF/CI wave 

functions using analytic gradient techniques.29, 47  Adiabatic PESs and NACTs were 

calculated on a three dimensional grid which included several values of the molecular 

hydrogen bond length.  Previous ab initio calculations of the adiabatic PESs for the B + 

H2 system fixed the molecular hydrogen bond length at the equilibrium value of 1.402 

a.u. 26, 27, 36, 37  This restriction forces the hydrogen molecule to remain in its ground 

vibrational state.  The data presented in this dissertation are a prerequisite for future work 
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in which vibrational transitions of the hydrogen molecule are included in the calculation.  

Furthermore, previous work did not directly calculate the NACTs.26, 27  The nonadiabatic 

effects were modeled using other methods.  In the past the direct calculation of NACTs 

was avoided primarily because NACTs can become singular for some systems.  These 

singularities make it very difficult to solve the Schrödinger equation numerically.48  

However, methods which use the NACTs are able to make an estimate of overall 

accuracy of the results that other methods cannot make.48   

Third, the adiabatic representation is transformed via a unitary transformation to 

form the diabatic representation.  When this transformation is chosen properly the 

NACTs are negligible in the diabatic representation, eliminating any singularities in the 

NACTs.  The form of the Schrödinger equation is also greatly simplified in the diabatic 

representation.  This work employs a line integral through the vector field defined by the 

NACTs to arrive at the adiabatic-to-diabatic mixing angle used in the unitary 

transformation.49, 50  The symmetry of the B + H2 system allows the value of this mixing 

angle to be predicted for certain configurations.26, 27   This allows the accuracy of the 

diabatic PESs to be estimated.  This work also presents a new method for reducing the 

source of error introduced by restricting the electronic basis to include only the boron 2P 

electronic states. 

Fourth, the diabatic PESs are cast into a form best suited for wave packet 

propagation.  This is done by fitting the diabatic PESs to reduced Wigner rotational 

matrix elements and employing an interpolation scheme to yield fit coefficients at any 

desired nuclear coordinate.26, 37  The fit coefficients are used to construct effective PESs 
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which include the effects of spin-orbit coupling and rotational dynamics.  This work 

presents both diabatic and adiabatic forms of these effective PESs. 

Finally, the data corresponding to the equilibrium bond length of the hydrogen 

molecule is extracted from these effective PESs and the CPM is used to compute 

scattering matrix elements.  These scattering matrix elements are compared with previous 

one dimensional scattering results.26, 27, 37 
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II. Theory 

 

In the framework of quantum mechanics, the Hamiltonian operator is used to 

determine the time-evolution of the state of a system as part of the time-dependent 

Schrödinger equation (TDSE).    The general form of the TDSE is given by 

The Hamiltonian 

 ( 2 ) 

where  is a wave function.  While the wave function  can be chosen arbitrarily it is 

often chosen as a superposition of eigenstates of the Hamiltonian determined by the time-

independent Schrödinger equation (TISE).  The general form of the TISE is given by 

 ( 3 ) 

where  is an eigenstate of the Hamiltonian operator .  E is the energy eigenvalue 

associated with the eigenstate .  The set of all eigenstates of the Hamiltonian form a 

complete set of orthogonal states which can be used to express other states. 

The Hamiltonian of a system of interacting atomic nuclei and electrons is given 

by 

 ( 4 ) 

The operator  is the sum of all the kinetic energy operators for the nuclei.   

 ( 5 ) 

In Eq. ( 5 ) the sum is carried out over the index  up to , the total number of nuclei in 

the system.  The mass of each nuclei is given by .  The momentum operator for each 

nuclei is given by .  
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The second operator in Eq. ( 4 ), , is the sum of all the kinetic energy operators 

for the electrons.   

 ( 6 ) 

In Eq. ( 6 ) the sum is carried out over the index i up to the number of electrons in the 

system given by .  The mass of each electron is the same and is given by .  Like the 

nuclei, each electron has its own momentum operator which is given by .   

The third operator in Eq. ( 4 ), , is the sum of the Coulomb potential 

interaction operators between nuclei. 

 ( 7 ) 

In Eq. ( 7 ) the sum is over all unique parings of nuclei in the system.  The charge of an 

electron is  and the charge numbers of each nuclei are given by  and .  The position 

operators of each nuclei are given by  and .  The operator  represents the set of 

position operators , one for each coordinate used. 

The fourth operator in Eq. ( 4 ),  is the sum of the Coulomb potential 

interaction operators between nuclei and electrons.   

 ( 8 ) 

In Eq. ( 8 ) the sum is carried out over each nuclei and electron pair, where  is used to 

index nuclei and i is used to index electrons. 

The last operator in Eq. ( 4 ), ,  is the sum of the Coulomb potential interaction 

operators between electrons. 
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 ( 9 ) 

In Eq. ( 9 ) the sum is carried out over all unique pairings of electrons in the system. The 

operators in Eqs. ( 5 ) through ( 9 ) are given in abstract form.  The specific form of the 

operators will depend on the representation chosen.  When these equations are combined, 

the Hamiltonian  for a system of  nuclei and  electrons can be written (in atomic 

units) as51 

 

( 10 ) 

In atomic units the mass and charge of an electron are  and .  The Plank 

constant  is also unity in atomic units.  The number of terms in Eq. ( 10 ) increases 

rapidly as electrons and nuclei are added to the system. The B + H2 system has three 

nuclei and seven electrons.  The Hamiltonian describing this system will have 55 terms.  

The TISE for the B + H2 system cannot be solved analytically.  Numerical methods for 

solving the TISE in this form for systems more complex than a single hydrogen atom are 

still being developed.17 

 

 In 1927, Born and Oppenheimer published their approach for solving the TISE for 

a molecule.3  Their approach was motivated by comparing the relative masses of 

electrons and protons.  Electrons, being roughly 1800 times less massive than a proton, 

The Born-Oppenheimer Approximation 
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typically move much faster than the atomic nuclei.  Thus, the electrons can be thought of 

as moving through the electric field produced by stationary nuclei.   The nuclei, in turn, 

can then be thought of as moving through the average electric field produced by the 

quickly moving electrons.  This observation motivated Born and Oppenheimer to treat 

the dynamics of the electrons separately from the nuclear dynamics. 

 Under the assumption that the nuclei are stationary, the nuclear kinetic energy 

operators are eliminated from Eq. ( 10 ) defining a new Hamiltonian: 

 ( 11 ) 

Eq. ( 11 ) is the electronic Hamiltonian.  As in Eq. ( 10 )  and  index nuclei while i and 

j index electrons.  The nuclear positions are now parameters in  rather than 

operators.  The symbol  represents the set of coordinates .  The set of nuclear 

and electronic coordinates are represented by  and  respectively.  The solutions to 

the electronic TISE have a parametric dependence on nuclear positions.  The electronic 

TISE is given by 

 ( 12 ) 

where  refers to the jth eigenstate of the electronic Hamiltonian with the nuclear 

positions for a given configurations of nuclei given by the set of nuclear coordinates .  

The eigenstate  is expressed in the electronic coordinate representation as 

 ( 13 ) 

In Eq. ( 13 ) the dependence of  on nuclear and electronic coordinates is 

shown explicity. 
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 In Eq. ( 12 )  refers to the jth energy eigenvalue of the corresponding 

eigenstate.  In the electronic Hamiltonian the nuclear repulsion term  becomes a 

constant for a given nuclear configuration and is added to the energy eigenvalue 

 to yield the jth PES.  The PES for a given eigenstate is a function of nuclear 

coordinates.  The dimensionality of the PES increases as the number nuclear degrees-of-

freedom (DOF) increases.  

For each nuclear configuration there are an infinite number of electronic 

eigenstates.  These states form a set of orthonormal functions which is complete, as 

shown in Eq. ( 14 ). 

 

 
( 14 ) 

The eigenstates for different nuclear configurations are not orthogonal to one another in 

general. 

Even after formulating the electronic Hamiltonian , the corresponding 

electronic TISE must be calculated numerically using methods such as the Hartree-Fock 

(H-F) approximation, configuration interaction (CI), and multi-configuration self-

consistent field (MCSCF) methods.  These methods are referred to as ab initio techniques 

(Latin: from the beginning52).  There are many software packages available that perform 

these calculations. Commonly used programs include GUASSIAN, GAMESS, 

MOLPRO, and COLUMBUS.  These programs numerically solve the electronic TISE by 

creating wave functions for each electron (spatial orbitals) and combining them in linear 

combinations to form molecular orbitals.   The linear combination of spatial orbitals is 
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optimized using variational methods.51 The resulting wave functions are the eigenstates 

of .   

Using Eq. ( 11 ) the full nuclear and electronic TISE, Eq. ( 3 ), can be rewritten as 

 ( 15 ) 

The set of all electronic eigenstates form a complete set and can be used as a basis to 

represent other functions.  The solutions to the full TISE can be represented as 

 ( 16 ) 

In Eq. ( 16 ) the full nuclear/electronic wave function is expanded using electronic 

eigenstates where  is the expansion coefficient and is a function of nuclear 

coordinates.  The coefficients  can be solved by substituting Eq. ( 16 ) into  

Eq. ( 15 ), multiplying from the left by , and integrating over electronic 

coordinates. 

 ( 17 ) 

This representation is called the adiabatic representation.  When electronic eigenstates are 

used to represent the solutions of the full TISE they are referred to as adiabatic states and 

their corresponding PESs are called adiabatic PESs.   

Since the total energy eigenvalue E is a constant, Eq. ( 17 ) can be further 

simplified by using the orthonormal property of the electronic eigenstates ( Eq. ( 14 ) ). 

 ( 18 ) 
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The electronic Hamiltonian  does not contain derivatives with respect to nuclear 

coordinates, thus it has no effect on .  This results in the term derived in Eq. ( 19 ). 

 

 

( 19 ) 

The operator  involves derivatives with respect to nuclear coordinates, and since both 

the coefficient  and the eigenstate  depend on nuclear coordinates, the 

product rule must be used when evaluating this term.  For clarity, the coordinate 

representation is used to express this inner product. 

 

 

 

( 20 ) 

The superscript A has been added to the coordinate representation of the eigenstates 

 to clearly identify them as adiabatic states.  The nuclear coordinate 

dependence of the del and Laplacian operators  and  are indicated by the subscript 

.   The form of Eq. ( 20 ) can be simplified by defining the following terms: 

 ( 21 ) 

 ( 22 ) 
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The terms  and  couple electronic eigenstates via their dependence on nuclear 

coordinates and are called derivative and kinetic coupling terms, respectively.  They are 

referred to as nonadiabatic coupling terms (NACTs).  The derivative coupling terms 

(DCTs) are vector quantities while the kinetic coupling terms are scalar values.  The 

DCTs have a vector component for each nuclear coordinate used to describe the system.  

When referring to a specific component of the vector field defined by the DCTs the 

notation  is used, where q denotes the specific nuclear coordinate.  In the literature 

the following shorthand notation for DCTs is frequently encountered: 

 ( 23 ) 

The DCTs  are antihermitian as expressed in Eq. ( 24 ) (see Appendix A). 

 ( 24 ) 

Combining the results of Eqs. ( 18 ) – ( 20 ) and using the definitions in Eqs. ( 21 ) and  

( 22 ),  Eq. ( 17 ) can be expressed as 

 

( 25 ) 

Eq. ( 25 ) now represents the TISE in the adiabatic representation.  Aside from treating 

the electronic problem separately from the complete nuclear/electronic problem, no other 

approximations have been made.  However, expanding the TISE using Eq. ( 16 ) has 

created a system of coupled differential equations.  When the NACTs are either small 

enough to be negligible or simply neglected the TISE becomes uncoupled and can be 

written as 

  ( 26 ) 
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This is referred to as the adiabatic Born-Oppenheimer approximation.6  In Eq. ( 26 ) the 

expansion coefficient  is interpreted as the nuclear wave function whose dynamics 

are governed by a single PES .  The term  is called an adiabatic PES.  

In later calculations  will be used as an alternate notation for the 

adiabatic PES associated with the ith electronic eigenstate . 

If a system is accurately modeled by Eq. ( 26 ) the system is said to behave 

adiabatically. However, not all systems can be modeled accurately by the adiabatic 

BOA.  When the NACTs are too large to be neglected the adiabatic BOA is invalid.  The 

generalized Hellmann-Feynman theorem, Eq. ( 27 ) , gives the clearest indication of 

when a system will behave nonadiabatically. 

 ( 27 ) 

This theorem is derived in Appendix B.  When  is non-zero and 

the difference between  and  is small will be large.  In the case where 

, the derivative coupling  will be singular. Points where two PESs 

intersect and  is singular are called conical intersections.5  Systems that have conical 

intersections, like the B + H2 system, cannot be modeled using Eq. ( 26 ). 

 The most common approach to solving Eq. ( 25 ) with non-negligible coupling 

terms involves transforming from the adiabatic basis to a new basis, the diabatic basis, in 

which the coupling terms are negligible.49, 50  However, practical computational 

limitations restrict the number of electronic eigenstates that can be considered.  To reduce 

the computational overhead, ab initio data is calculated only for a restricted subspace of 

the full electronic Hilbert space consisting of the electronic states most strongly coupled 
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to one another.53  Restricting the subspace neglects any weak coupling between states 

within the subspace and external states and can limit the effectiveness of the adiabatic-to-

diabatic transformation (ADT). 54-56  These considerations can be best illustrated by 

examining the B + H2 system. 

  

 In its ground state, boron has a 1s22s22p electronic state.  The unpaired 2p 

electron gives rise to a 2P spectroscopic term consisting of three degenerate atomic 

orbitals energetically separated from other boron orbitals.  As the boron atom approaches 

the hydrogen molecule the degeneracy is lifted, however, they remain energetically close 

to one another.   By Eq. 

The B + H2 System 

( 27 ) it is assumed that these orbitals will be strongly coupled to 

one another while only weakly coupled to states outside the 2P manifold.  Consequently, 

the electronic basis is truncated to include only the three states within the 2P manifold. 

In general, the B + H2 system has  symmetry where 1 is the unit 

operator and  corresponds to reflection though the B, H2 plane.  The symmetry of the 

orbitals is defined as follows: 

 

 ( 28 ) 

According to Eq. ( 28 ) orbitals that are unaffected by a reflection about the B, H2 

plane have A′ CS symmetry.  Figure 1 shows an example of this type of orbital. 
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Figure 1. An example of a boron p orbital with A′ CS symmetry 

 
 
In Figure 1, the green circles represent the hydrogen atoms, the blue circle represents the 

boron atom, the blue lobe represents the portion of the p orbital with positive phase, and 

the red lobe represents the portion of the p orbital with negative phase. 

If a reflection about the B, H2 plane flips the orientation of the orbital then the 

orbital has A″ CS symmetry.  An example of this type of orbital is shown in Figure 2. 

 
 

 

Figure 2. An example of a boron p orbital with A″ CS symmetry 

 
 
In Figure 2 a reflection about the B, H2 plane would cause the lobes of positive and 

negative phase of a p orbital to change positions. The two boron 2p orbitals with A′ CS 

symmetry are labeled as 1 2A′ and 2 2A′ with 1 2A″ labeling the orbital with A″ CS 



19 
 

symmetry.  These orbitals have corresponding adiabatic PESs , , and .  

Here the superscript A has been omitted to avoid confusion with the symmetry label.  

Given that the B + H2 involves a single atom interacting with a homonuclear diatomic 

molecule the adiabatic PESs satisfy the symmetry relation .   

The TISE, Eq. ( 25 ), for the B + H2 system with a truncated electronic basis can 

be written as 

 

( 29 ) 

In Eq. ( 29 ) the NACTs have been separated from the kinetic energy operators and PESs.  

Orbitals with different CS symmetry will not couple giving rise to the off-diagonal zeros 

in the NACT matrix.  This is discussed in Appendix C.  Although the eigenstate with A″ 

CS symmetry does not couple with the other eigenstates it is still included in the 

calculation. All three functions span the boron 2p subspace and are required when 

transforming from a basis labeled by the angular momentum quantum numbers to one 

labeled by Cartesian coordinates.  As a result of CS symmetry, the matrix containing the 

coupling terms is block diagonal with a 2-by-2 block and a 1-by-1 block. 

 The coupling matrix can be simplified further by choosing real valued eigenstates.  

Given the antihermitian property of the DCTs, real valued functions forces the diagonal 
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coupling terms to be zero.  This in turn forces the diagonal kinetic coupling terms to be 

zero due to the following relationship between derivative and kinetic coupling terms. 

 

 
( 30 ) 

According to Eq. ( 30 ), if the derivative coupling term for a given pair of eigenstates is 

exactly equal to zero everywhere the corresponding kinetic coupling term will also be 

equal to zero. 

 

The PESs as well as the NACTs depend on the nuclear coordinates used to 

describe the system. The internal DOF of the B + H2 system are described by Jacobi 

coordinates R, the distance between the boron atom and the center-of-mass (CM) of the 

hydrogen molecule; r, the bond length of the hydrogen molecule; and θ, the polar angle 

formed by the axis containing the boron atom and the axis containing the hydrogen 

molecule which intersect at the CM of the hydrogen molecule.  

The B + H2 Coordinate System 

Figure 3 illustrates the 

same body fixed (BF) and space fixed (SF) coordinate system used by Weeks et al.37  A 

body fixed (BF) coordinate system is chosen in which the boron atom and the H2 CM are 

fixed on the BF z axis.  The orientation of the hydrogen molecule is determined by the 

angle θ and the projection of the H2 molecular axis on the BF xy plane.  The azimuthal 

angle  is formed between the BF x axis and this projection.  This angle is not shown in 

Figure 3.   

 
 



21 
 

 

Figure 3. Body fixed and space fixed coordinate system used to describe the B + H2 system37 

 
 
The BF axis is oriented in the SF coordinate axes by using Euler angles α and β and 

constraining the BF y axis to lie in the SF XY plane.  The Euler angle α is formed by the 

projection of the BF z axis onto the SF XY plane and the SF X axis.  The Euler angle β is 

the polar angle formed between the BF z axis and the SF Z axis.  The origin of both the 

BF and SF axes coincide at the B, H2 CM.  In Figure 3 the CM is displaced away from 

the boron atom for clarity.  In this coordinate system the 1 2A′ and 2 2A′ orbitals are 

chosen to correspond to the pz and px orbital of the boron atom respectively, while the A″ 

orbital corresponds to the py.26, 37 

 

 The TISE for the B + H2 system in the adiabatic representation is given by Eq.  

The Adiabatic-to-Diabatic Transformation 

( 29 ).  The NACTs make it difficult to solve Eq. ( 29 ) directly.  As mentioned earlier, it 

is desirable to transform from the adiabatic representation to the diabatic representation in 
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which the NACTs are negligible. Many methods for calculating diabatic states have been 

described in the literature.57  These methods can be divided into two groups: those that 

calculate the adiabatic-to-diabatic transformation (ADT) using the NACTs, and those that 

determine the diabatic states using the matrix elements of various Hermitian operators.58  

The methods in the latter group avoid the computational overhead of calculating the 

NACTs over a grid in nuclear configuration space dense enough to capture the strong 

variation NACTs can experience as a function of nuclear coordinates.59-63  This variation 

is especially severe near conical intersections, where the DCTs become singular.5  

However, it is generally accepted that methods using NACTs are more accurate in 

calculating diabatic states.48, 54 

With the truncated B + H2 basis used in Eq. ( 29 ) the ADT is defined as 

 ( 31 ) 

where the angle  is the ADT mixing angle.57  The adiabatic states are labeled 

according to their symmetry.  The diabatic states are given the labels xx, yy, and zz.  In 

matrix form Eq. ( 31 ) is given by .  The matrix  represents the diabatic-to-

adiabatic transformation.  The ADT transformation is unitary, thus .  As 

discussed in Appendix C, only states with A′ CS symmetry will mix; hence, the 

transformation matrix  has the same block diagonal form as the coupling matrix in Eq. 

( 29 ).  The ADT mixing angle  is calculated for each nuclear configuration. 

 The derivative coupling term between 1 2A′ and 2 2A′ states in the adiabatic 

representation can be transformed into the diabatic representation by using Eq. ( 31 ) to 

make the following substitutions into Eq. ( 21 ).   
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( 32 ) 

After simplifying the resulting expression Eq. ( 33 ) is obtained.  The details of this 

derivation are given in Appendix D. 

 ( 33 ) 

Under the assumption that the DCTs in the diabatic representation are equal to zero Eq.  

( 33 ) simplifies to 

 ( 34 ) 

For systems with a single nuclear coordinate this equation can be integrated directly to 

yield the ADT mixing angle.  For systems with more than one nuclear coordinate the 

single integral becomes a path integral through the vector field defined by each 

component of the DCTs.50, 64-66  For the case of B + H2 the integral takes the following 

form: 

 ( 35 ) 

Eq. ( 35 ) assumes a specific order of integration for the Jacobi coordinates.  Eq. ( 35 ) 

gives the ADT mixing angle  to an overall constant .  A reference point  in 

the Jacobi coordinate space is chosen to start the line integral for all determinations of the 

ADT mixing angle.  The ADT mixing angle for this reference point is set to zero or some 

arbitrary constant. 

Under the assumption that  the value of the mixing angle should be path 

independent as indicated by Eq. ( 36 ). 

 ( 36 ) 
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Eq. ( 36 ) follows directly from the vector calculus theorem that states that the curl of the 

divergence of a vector field must be zero: .  When this condition 

is met the ADT completely eliminates the NACTs and the resulting diabatic surfaces are 

called strictly diabatic surfaces.48, 64, 67 

 Under the assumption that the ADT successfully eliminates the NACTs, the TISE 

given by Eq. ( 29 ), becomes 

 ( 37 ) 

The resulting diabatic PESs are given by the following equations. 

 

 

 

 

( 38 ) 

However, as a consequence of truncating the electronic basis set and keeping only those 

terms in the 2P manifold, DCTs involving states outside the basis have been neglected.  

This introduces error into the ADT mixing angle.  This is best understood by 

decomposing the derivative coupling vector field into a transverse and longitudinal 

component.68 

 ( 39 ) 

The transverse and longitudinal component have the following properties. 

 ( 40 ) 
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With these definitions, Eq. ( 33 ) becomes 

 ( 41 ) 

The error associated with the neglected coupling terms gives rise to a transverse 

component of the derivative coupling vector field which introduces path dependence in 

the line integral used to calculate the ADT mixing angle.53, 56  This error cannot be 

removed and is often referred to as nonremovable component of the derivative coupling 

field.57  While Eq. ( 34 ) can still be solved for the ADT mixing angle, the error will 

accumulate through each path.  Diabatic surfaces affected by this error are termed quasi-

diabatic surfaces.  The accuracy of the resulting quasidiabatic states is determined the 

magnitude of the residual coupling.  In the cases where this residual coupling is small the 

truncated basis is expected to adequately capture the nonadiabatic effects in the 

dynamics.69     

 Near a conical intersection the nonremovable coupling is small relative to the 

removable coupling, making a smaller overall contribution to the line integral.70  As the 

distance from the conical intersection increases the removable and nonremovable 

couplings approach the same magnitude.71  Consequently, the path used for the line 

integral has typically been restricted to regions of nuclear configuration space near a 

conical intersection to minimize the relative contribution of nonremovable error to the 

path integral.72-76  The restricted range of nuclear coordinates also minimizes the errors 

introduced by finite grid spacing, thus allowing the location of the conical intersection to 

be determined with a high degree of accuracy.73  Xu and coworkers have extended the 

line integral technique to search for conical intersections throughout all nuclear 
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configuration space for H3.  However, their method for calculating the NACTs relies on a 

semiempirical determination of the ADT matrix in conjunction with Hellmann-Feynman 

theorem and ensures a curl-free vector field.77  Thus their line integral is constrained to be 

path independent. 

 Another approach for solving for the ADT mixing angle involves taking the 

divergence of Eq. ( 33 ) to obtain 

 ( 42 ) 

Using the definitions in Eq. ( 40 ) and assuming that the resulting diabatic NACTs are 

negligible Eq.  ( 42 ) simplifies to  

 ( 43 ) 

Eq. ( 43 ) is a Poisson’s equation which allows the ADT mixing angle to be solved 

without performing a line integral.  Work has been done to solve Eq. ( 43 ); however, the 

boundary conditions are unknown and must be approximated.55, 78  Furthermore there are 

numerical restrictions on the regions where Eq. ( 43 ) can be solved. 

 

The calculation of scattering matrix elements is not conveniently done by solving 

the TISE in the diabatic electronic representation ( Eq. 

The Asymptotic Basis 

( 37 ) ).  The time-dependent CPM 

is one approach for calculating these scattering matrix elements.43, 44  In this method the 

Hamiltonian for the B + H2 system is represented using states defined in the asymptotic 

limit of the system. 

 In the asymptotic limit is reached as the distance R between B and H2 becomes 

large.  In the asymptotic limit the B + H2 system consists of two non-interacting systems: 
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the boron atom and the H2 molecule.  The boron atom has a nucleus and five electrons 

and the H2 molecule has two nuclei and two electrons. The terms in the full Hamiltonian 

can be classified according to the system they belong to. The full Hamiltonian for the B + 

H2 system, excluding spin-orbit coupling, can be written as 

 ( 44 ) 

The terms  and  represent the kinetic energy operators for the nucleus and electrons, 

respectively, of the boron system.  The terms  and  represent the same for the H2 

system.  The term  represents the Coulomb interaction potential between particles in 

the boron system only.  The term  represents the same for the H2 system.  The term 

 represents the Coulomb interaction potential between the boron system and the H2 

system.  This term has the form (in atomic units) 

 ( 45 ) 

In Eq. ( 45 ), the subscript a refers to particles associated with the atom, while the 

subscript m refers to particles associated with the molecule.  The atomic number of a 

particle is given by Z.  The set of position operators for each charged particle is given by 

.  Finally, the last term  represents a constant energy offset which has no effect on 

the eigenstates. 

In the asymptotic limit of large R the contribution of the electrostatic interaction 

potential  to the total energy goes to zero, and the asymptotic Hamiltonian becomes 

 ( 46 ) 

The eigenbasis of the asymptotic Hamiltonian  is a direct product of the states 

associated with each term of Eq. ( 46 ).   The term  is the electronic Hamiltonian of 
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the boron system.  This operator is the sum of all the Coulomb interaction terms between 

charged particles in the boron system as well as all the electron kinetic energy operators 

for the boron system.  It can be expressed as 

 ( 47 ) 

 represents the same for the H2 system and is expressed as 

 ( 48 ) 

As discussed earlier, the basis of electronic eigenfunctions was truncated to include only 

the 2p orbitals associated with the unpaired boron electron.  These orbitals are also 

eigenfunctions of the term .  The electronic eigenstates of the boron atom are 

represented by .  When spin-orbit coupling is ignored the states  

are degenerate with an energy of  corresponding to the boron 2P term.  As the other 

sources of angular momentum of the B + H2 system are coupled the electronic eigenstates 

for the boron atom will be indexed by spin-orbit coupling labels. 

The asymptotic basis of the electronic hydrogen molecule Hamiltonian includes 

only the ground electronic state represented by .  In the asymptotic limit, its energy 

eigenvalue is given by the vibrational potential energy curve  which depends on 

the hydrogen bond length r.  These eigenstates form the asymptotic electronic basis 

which is represented by . 

 Representing Eqs. ( 47 ) and ( 48 ) in this basis yield the asymptotic energy of the 

system, as shown by 
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 ( 49 ) 

The operators  and  are diagonal in this representation.  The potential  

represents the vibrational potential energy of H2 in its ground electronic state . 

In previous work 26, 37, the hydrogen bond length was restricted to its equilibrium 

value .  When r is held at a fixed value the asymptotic energy for the hydrogen 

molecule becomes a constant and can be eliminated along with the asymptotic energy of 

the boron atom by choosing  appropriately.  In this work the requirement that 

 is relaxed.  By relaxing the restriction on , the asymptotic energy of H2 is no 

longer a constant with respect to . Consequently the  dependence of  cannot be 

eliminated and the constant energy offset  is used to eliminate  only. 

In anticipation of representing the full Hamiltonian in the asymptotic electronic 

basis , Eq. ( 46 ) can be written as 

 ( 50 ) 

Using the BF and SF coordinates developed earlier, the nuclear kinetic energy operators 

can be expressed in a CM frame as 79, 80 

 ( 51 ) 

In Eq. ( 51 ) the reduced masses are given by  and 

.  The terms  and  are momentum operators conjugate to the coordinates 

R and r.  The angular momentum operator  corresponds to the rigid rotor comprised of 

the H2 molecule.  The angular momentum operator  corresponds to the rigid rotor 

comprised of the boron atom and the CM of the H2 molecule. 
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 The asymptotic Hamiltonian  can now be expressed as 

 ( 52 ) 

The operators in Eq. ( 52 ) can be grouped into a vibrational, translational, and rotational 

piece. 

 ( 53 ) 

Eq. ( 53 )  describes the vibration of H2 in its ground electronic state.  This piece will be 

expressed in the coordinate representation using the Jacobi coordinate r. 

 Eq. ( 54 ) describes the translation of the boron atom with respect to the CM of 

H2.   

 ( 54 ) 

The eigenfunctions of this translation operator are plane waves.  Each plane wave is 

labeled by its corresponding momentum (in atomic units) given by .  

Eq. ( 55 ) describes the rotation of the H2 molecule and the tumbling motion of 

the boron atom around the H2 molecule. 

 ( 55 ) 

There are four contributions to the total angular momentum J for the B + H2 system: j, L, 

, and s.  These angular momentum must be coupled to produce a set of quantum 

numbers to index the rotational eigenfunctions.  Dubernet and Hutson examine five 

different coupling schemes.79  This work uses the coupling scheme labeled “case 1A” in 

their paper.  This same scheme is described by Jouvet and Beswick.81  This coupling 

scheme is illustrated in Figure 4. 
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Figure 4. Angular momentum coupling scheme "case 1A" described by Dubernet and Hudson79 

 
 
In this scheme the angular momenta  and s associated with the orbital angular moment 

and spin of the unpaired boron electron couple to give ja, which has a projection ω on the 

BF z axis.  Earlier in this section the electronic eigenstates of boron, neglecting spin, were 

indexed by their orbital angular momentum .  In the coupled angular momentum 

scheme they are indexed by the spin-orbit indices ja and ω.  The angular moment of the 

H2 rotor j has a projection k onto the BF z axis, and is not coupled with ja.  The total 

angular moment is given by 

 ( 56 ) 

The total angular momentum is chosen to have a projection on the BF z axis given by 

 and a projection M onto the SF z axis.  In the centrifugal sudden (CS) 

approximation  is held constant.  The angular momentum L of the tumbling 

motion of the boron atom with the CM of the hydrogen molecule has no projection along 
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the BF z axis since the boron atom and the CM of the hydrogen molecule lie along the BF 

z axis. 

Using these labels, the basis functions of the spin-orbit coupled BF basis are 

labeled as follows: 

 ( 57 ) 

The label  is defined to correspond to properly chosen values for the quantum numbers 

in Eq ( 57 ).  Spin-orbit coupling of the unpaired boron atom leads to  and  as the 

possible values of ja, allowing ω to have values ranging from  to  in integer 

steps.  There are an infinite number of rotation energy states for the H2 rotor, allowing j 

to range from zero on up in integer steps.  The projection k ranges from  to  in integer 

steps. There is no quantum number associated with the tumbling motion of the boron 

atom and the CM of the hydrogen molecule in this coupling scheme.  The possible values 

of the total angular momentum J range from  on up in integer steps. 

The complete basis of the asymptotic Hamiltonian is given by the direct product 

of the eigenfunctions for each of the terms in Eq. ( 52 ). 

 

 
( 58 ) 

The eigenfunctions form an orthonormal set as shown by 

 ( 59 ) 

Since the hydrogen molecule is restricted to the ground state it will be eliminated from 

the notation.  These functions are now used to represent the full Hamiltonian.   
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 The full Hamiltonian, this time with a spin-orbit coupling term included, will be 

represented in the asymptotic given by Eq. 

The Asymptotic Representation 

( 58 ). 

 ( 60 ) 

In Eq. ( 60 ),  is the spin-orbit term and the constant energy offset  has been used 

to eliminate the contribution of the electronic boron Hamiltonian .  Since the 

asymptotic basis functions are not eigenfunctions of the full Hamiltonian, the form of the 

TISE in this representation will not be diagonal. 

There are an infinite number of states in the asymptotic basis.  For practical 

computational reasons this basis must also be truncated.  For this work, only the states 

where J = , M = , and P =  are included.  By truncating the electronic 

basis functions to include only the 2P states of the boron atom , , and 

.  The hydrogen molecule is restricted to the ground electronic state.  As 

shown in Eq. ( 61 ), the basis indices ( Eq. ( 58 ) ) can be simplified by eliminating the 

labels that remain constant. 

 ( 61 ) 

  The matrix elements of the first term of the Hamiltonian ( Eq.( 60 ) ), the radial kinetic 

energy term, are given by (in atomic units) 

 ( 62 ) 

where  is given by 

 ( 63 ) 
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The matrix elements of the vibrational kinetic energy term are given by Eq. ( 64 ). 

 ( 64 ) 

The matrix elements of the H2 rotational energy are given by Eq. ( 65 ). 

 ( 65 ) 

Eqs. ( 62 ), ( 64 ), and ( 65 ) represent terms of the Hamiltonian that are diagonal in this 

basis. 

The matrix elements of the angular momentum associated with the tumbling 

motion of the boron atom and the hydrogen molecule CM is not diagonal in this 

representation.  The matrix elements are obtained by using  Eq. ( 56 ) to express  as 

 

 

( 66 ) 

In Eq. ( 66 )  and  are the raising and lowering operators of the total angular 

momentum operator.  Likewise, , ,  and  are the raising and lowing operators 

of the angular momentum operators  and  respectively.  The matrix elements can then 

be calculated using the established properties of raising and lowering operators with one 

exception.  The operation of  are reversed as a consequence of the BF angular 

momentum calculus.82, 83  The terms in Eq. ( 66 ) can be classified as either diagonal or 

off-diagonal terms.  The terms diagonal in this representation are those that do not 

include raising and lowering operators.  These terms operate on the basis functions in the 

following way 

 



35 
 

 

 

( 67 ) 

The off-diagonal terms are given by Eqs. ( 68 ), ( 69 ), and ( 70 ). 

 

 

( 68 ) 

 

 

( 69 ) 

 

 

( 70 ) 

The matrix elements of the tumbling kinetic energy terms are then given by 

 

( 71 ) 

Eq. ( 71 ) is grouped into four terms, each of which couples states for which  and 

.  The second and third terms couple states for which .  It is common to 

neglect these terms by invoking the CS approximation.84-89  This approximation assumes 

that the interaction takes place rapidly enough that the projection P of the total angular 

momentum is conserved.  This work uses the CS approximation. 
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 The spin-orbit coupling operator is given by  where  and  are the 

orbital and spin angular momentum operators of the unpaired 2p1 boron electron.  The 

matrix elements of this operator in the asymptotic basis are given by Eq. ( 72 ). 

 ( 72 ) 

In this expression, the atomic boron value of  is 4.876  10-5 atomic units.    For this 

calculation the spin-orbit coefficient  is assumed to be constant and is set to the atomic 

boron value.  This is called the “pure precession” approximation.26   In general,  changes 

as a function of the nuclear coordinates due to the perturbation of the boron atomic 

orbital. 

 The electrostatic interaction potential  has a straightforward representation in 

the coupled angular momentum asymptotic basis when first expanded using a standard 

multipole expansion.90  The multipole expansion has the form (in atomic units) 

 

 
( 73 ) 

In Eq. ( 73 ) the electrostatic interaction potential is expanded in terms of renormalized 

spherical harmonics, .  The coordinates  and  are the polar and azimuthal 

angles corresponding to the unpaired B(2p1) electron.  All of the other electronic and 

nuclear coordinates have been integrated over.  The form of this expansion assumes that 

mixing of states outside the 2P manifold will be weak.79  Eq. ( 73 ) has the following form 

when represented in the coupled angular momentum basis: 
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( 74 ) 

The inner products in Eq. ( 74 ) are evaluated using the Wigner-Eckhart Theorem 

yielding Eqs. ( 75 ) and ( 76 ).   

 ( 75 ) 

 

( 76 ) 

In Eqs. ( 75 ) and ( 76 ) 3-j symbols are represented as  and 6-j symbols are 

represented as .37, 82, 83, 91  In Appendix E the symmetry of the electrostatic interaction 

potential is explored.  The expansion coefficients  are found by expanding 

the numerical diabatic PESs , , , and  ( Eq. ( 37 ) ) in terms of renormalized 

spherical harmonics and performing a term-by-term comparison with the analytic 

expansion of the electrostatic interaction potential.26, 27, 79 

Comparing the full Hamiltonian as expressed in Eq. ( 44 ) with the electronic 

Hamiltonian, Eq. ( 11 ), the following connection is established: 

 

 
( 77 ) 

As explained earlier, Eq. ( 77 ) was solved using ab initio techniques resulting in 

adiabatic PESs.  The ADT mixed these surfaces to form diabatic PESs.  As shown in Eq. 

( 37 ), when the electronic Hamiltonian is represented in the diabatic basis is has the 

block diagonal form shown below. 
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In order to make a comparison to the numerical PESs, the analytic expansion of Eq. ( 77 ) 

in the asymptotic basis must include the contributions of both  and .  This is done 

by representing the electronic Hamiltonian using the asymptotic electronic basis 

 as opposed to the coupled angular momentum basis used in 

Eqs. ( 74 ), ( 75 ), and ( 76 ).  

 

 

 

 

( 79 ) 

In Eq. ( 79 ) the results of Eq. ( 49 ) have been applied.  The electronic Hamiltonian of 

the hydrogen molecule becomes the ground state vibrational potential .  The 

electronic part of the electrostatic interaction potential has been expanded in terms of 3-j 

symbols using the Wigner-Eckhart Theorem.  

 The potential  only depends on the hydrogen bond length coordinate .  

Only the constant renormalized spherical harmonic term  is required to fit this 

potential.  Eq. ( 79 ) can be written as 
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( 80 ) 

The  terms will always evaluate to unity since H2 is restricted to its ground electronic 

state. 

The properties of the 3-j symbols lead to further simplifications to Eq. ( 80 ).  The 

triangle inequality  restricts the values of  to 0, 1, and 2.  3-j 

symbols also have the property 

 ( 81 ) 

when the sum  is odd.  These properties lead to     

 

( 82 ) 

In Eq. ( 82 ), the values of μ are determined by the bottom row of the 3-j symbol.  This 

property requires that , or , where  and  can be 0 and ±1.  

Thus  takes on values ranging from –2 to 2 in integer steps.  The matrix elements of the 

diabatic electronic potential energy  including the contribution from the H2 molecule 

can be written as 
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The matrix elements of  are expressed in terms of coefficients  given by 

 ( 84 ) 

To cast  into a form which can be compared with the numerical ab initio 

diabatic PESs, the following transformation to the Cartesian basis is made. 

 

 

 

( 85 ) 

This transformation yields the following expression for : 
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 ( 86 ) 

As expected,  has the same block diagonal form as Eq. ( 78 ).  Eq. ( 86 ) is the 

analytical form of the electrostatic Hamiltonian, Eq. ( 77 ).  Now the numerical diabatic 

PES must be fit to the same functional form so that a term-by-term comparison can be 

made. 
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The numerical diabatic PESs are expanded in terms of reduced Wigner rotation 

matrix elements which have the following relationship to renormalized spherical 

harmonics82, 83 

 ( 87 ) 

The following functions are used to fit each diabatic PES. 

 

 

 

 

 

 

( 88 ) 

The functions  and  are introduced to separate fitting functions with 

different symmetry, in this case the  and  terms.  They are defined as 

 

 
( 89 ) 

The function  can also be defined as 

 ( 90 ) 

Both definitions have been found in the literature (Weeks37 uses Eq. ( 89 ) while 

Alexander26, 27 uses Eq. ( 90 ) ), and the choice is arbitrary.  
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The fit coefficients in Eq. ( 88 ) are compared term-by-term with the 

corresponding expansion coefficients in Eq. ( 86 ) yielding 

 

 

 

 

( 91 ) 

These equations are then inverted to give the desired fit coefficients  in terms 

of the expansion coefficients of the numerical PESs. 

 

 

 

 

( 92 ) 

As seen in Eq. ( 92 ) the definition of  introduces a sign change in the 

 expansion coefficients.  The sign of  was verified to have no effect 

on the calculation of the electrostatic interaction potential . 

Now that the expansion coefficients  are known, the representation of 

the electrostatic interaction potential  in the coupled angular momentum asymptotic 

basis given by Eq. ( 74 ) is complete. 
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The full Hamiltonian, Eq. 

Structure of the Asymptotic Representation 

( 60 ), is not diagonal when expressed as a matrix in the 

asymptotic representation.  The Kronecker deltas that appear in the matrix elements for 

each term in the full Hamiltonian determine which asymptotic basis states, defined by the 

labels in Eq. ( 57 ),  will couple with one another.  Terms which have the Kronecker delta 

, Eq. ( 63 ), are completely diagonal in the asymptotic representation. This includes 

the radial and vibrational kinetic energy operators ( Eqs. ( 62 ) and ( 64 ) ), the spin-orbit 

coupling operator ( Eq. ( 72 ) ), the rotational kinetic energy operator of the H2 molecule  

( Eq. ( 65 ) ), and the electronic Hamiltonian of the hydrogen molecule ( Eq. ( 79 ) ) are 

diagonal in the asymptotic representation. 

The rotational kinetic energy of the boron atom with the CM of the H2 molecule  

( Eq. ( 71 ) ) and the electrostatic interaction potential ( Eq. ( 74 ) ) are not diagonal in the 

asymptotic representation.  By examining the Kronecker deltas in these terms, the matrix 

elements can be organized into a hierarchy of block diagonal pieces, each of which is 

infinitely large.  The J block are the largest in this hierarchy.  Each J block is subdivided 

into M sub-blocks.  Each M block contains identical information about the system, so 

only one M block needs to be considered.  This is illustrated in Figure 5 for a truncated J 

=  block.  The grey regions in Figure 5 are zero.  Under the CS approximation, the 

gray regions within a given M block are zero; however, when this approximation is lifted 

the entire M block may have non-zero values. 
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Figure 5. A visualization of the J = 1/2 block of the matrix elements of the asymptotic Hamiltonian 

 
 
As shown in Figure 5, each M block (red) is further subdivided into smaller P blocks 

(green).  The ellipses indicate that each P block is infinite in dimension.  The grey 

regions indicate the location of non-zero matrix elements.  The white regions are where 

the matrix elements are zero.  The electrostatic interaction potential is diagonal in this 

block.  The Kronecker delta  in Eq. ( 74 ) reinforces a result that arises from the 3-j 

symbols in Eq. ( 75 ) and ( 76 ).  The following two equations are obtained using the 

condition that the bottom row of a 3-j symbol must sum to zero: 

 
 

( 93 ) 

These equations imply that , or .91  However, the matrix 

elements of the tumbling motion of boron and H2 molecule are not diagonal in the P 

block.  This is the primary reason for invoking the CS approximation.  Under the CS 

approximation off-diagonal P blocks are zero, and a specific P block can be chosen for 

the calculation rather than having to consider the entire M block. 
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The P block can be further subdivided into a parahydrogen block and an 

orthohydrogen block.  Since these states do not couple they are block diagonal in P.  In 

this work only transitions from the ground rotational state  re considered.  This 

restricts the basis functions to include only parahydrogen states ( ). 

Given that only even values of j will be used and that ja will be either  or , 

the basis functions for the J =  block under the CS approximation can be identified. 

This work examines the P =  block, which leads to the requirement that 

.  The basis functions which meet this requirement are shown below. 
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As shown in Figure 6, the parahydrogen block has a 2-by-2 sub-block corresponding 

to .  For each additional value of  considered an additional six basis functions are 

added.  At first glance, it does not seem that some of the basis functions in Eq. ( 94 ) and  

( 95 ) belong in the J =  block since their values for j and ja sum to greater than .  

Their inclusion in this block is a consequence of how the three angular momenta of this 

system couple to give the total angular momentum.83    
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Figure 6. A visualization of the parahydrogen block within the P sub-block of the matrix elements of the 
asymptotic Hamiltonian 

 
 

Since an infinite number of basis function cannot be considered in a numerical 

calculation, the basis set must be truncated.  This is done by considering values of j for 

which the rotational energy is less than the total energy of the collision being considered.  

This threshold value of j is designated  and leads to a basis size given by  

.  The rotational energy levels (in atomic units) of the H2 rotor are given 

by 

 ( 96 ) 

These energies depend on the bond length of H2 which is no longer a constant.  However, 

for the energies considered in this work, the equilibrium bond length is used as an 

estimate.  Energies between 0.0 a.u. and 0.01 a.u. are considered (less than the energy 

required to excite the first vibrational mode of H2).  Using Eq. ( 96 ), this leads to 

 and a basis size of 20. 
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The time-dependent Schrödinger equation (TDSE) can be represented using the 

basis functions defined by Eqs. 

The Time-Dependent Schrödinger Equation  

( 94 ) and ( 95 ).  The general form of the TDSE is given 

by Eq. ( 2 ).  The Hamiltonian can be broken into a kinetic energy term and a potential 

energy term.  For the B + H2 system the kinetic term is composed of the kinetic energy 

operators given by Eqs. ( 62 ) and ( 64 ).  The potential energy term is the sum of the H2 

rotational and tumbling kinetic energy, the electrostatic interaction potential, and the 

spin-orbit coupling.  The matrix elements of this operator are referred to as effective PES 

and are given by 

 ( 97 ) 

The labels  and  represent states for which appropriate values for each of the labels in 

Eq. ( 57 ) have been chosen.  The superscript D is used to indicate that  is 

not diagonal in this representation. 

 In matrix form, the TDSE is given by (atomic units) 

 

 

( 98 ) 

where the radial kinetic energy and the vibrational kinetic energy operators have been 

simplified by introducing the reduced wave function .  The 

formal solution (in atomic units) governing the time evolution of the reduced wave 

functions is 
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 ( 99 ) 

Eq. ( 99 ) represents the time evolution of a collection of wave functions, denoted 

, under the influence of the Hamiltonian H.  The time interval is given by  

The wave functions propagate on a potential surface given by a corresponding 

diagonal element of  .  However, with each propagation step  the off-

diagonal elements of  couple the wave functions causing probability amplitude 

to be redistributed over the entire collection of  PESs.  If the effective potential energy 

 were diagonal, this redistribution would not occur and each wave function 

would propagate independently on its own potential surface. 

Eq. ( 99 ) can be expressed in a form more suitable for numeric computation by 

applying the split operator approximation (SOA). 

 

( 100 ) 

In Eq. ( 100 ), terms of order than  and higher involve commutators of  and .  

These terms can be neglected provided that the time step  is sufficiently small.  The 

SOA is described in detail in Leforestier et al. 92  Wave packet propagation using the 

SOA has been demonstrated by Alvarellos and Metiu.93 

 Each exponential function in Eq. ( 100 ) is easily evaluated by moving into the 

representation where each operator is diagonal.  An exponential function with a matrix 

argument must be expanded in a Taylor series to evaluate it.  If the matrix is diagonal this 

Taylor series simply yields a new diagonal matrix where the values of each element are 
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the exponentiated values of the corresponding value of the original matrix.  This is 

illustrated in Eq. ( 101 ). 

 ( 101 ) 

The kinetic energy operators in Eq. ( 98 ) are diagonal in the asymptotic representation.  

A Fourier transform changes the kinetic energy operators for the coordinate 

representation into the momentum representation, replacing the derivative operators  

with numbers .  This simplifies the evaluation of the exponential function by 

multiplying momenta rather than differentiating with respect to nuclear coordinates. 

The exponential functions containing the effective potential energy term can also 

be transformed in a similar way.  It is possible to define a unitary transformation  for 

each  point that diagonalizes the effective potential energy.  Using this spatially 

dependent transformation matrix , the effective potential , Eq. ( 97 ),  

transform as follows 

 

 
( 102 ) 

Once the effective potential has been transformed, Eq. ( 101 ) can be used to evaluate the 

exponential.   

 The time evolution of the reduced wave functions under the SOA is given by 

 ( 103 ) 

Eq. ( 103 ) describes each processing step as  becomes .  First, 

the wave packet and exponential operator  are transformed to the adiabatic basis 

and then multiplied.  The result of this operation is first transformed back to the diabatic 
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representation and then Fourier transformed to the momentum representation.  A two 

dimensional Fourier transform used to transform both radial and vibrational kinetic 

energies, Eqs. ( 62 ) and ( 64 ).  The exponential operator  is diagonalized by this 

transformation.  An inverse Fourier transform returns the result of this multiplication 

back to the coordinate representation. Here again the wave packet and exponential 

operator  are transformed to the adiabatic basis and then multiplied.  Finally, the 

result is transformed back into the diabatic representation yielding the time evolved wave 

packet . 

 

 By using the propagation scheme described by Eq. 

Introduction to the Scattering Problem 

( 100 ), an initial wave packet 

can be propagated under the influence of the effective potential, Eq. ( 97 ).  In this way 

the nonadiabatic effects captured in the full Hamiltonian are incorporated into the wave 

packet dynamics.  Information about the system can be extracted from these evolved 

wave packets.  This work focuses on calculating scattering matrix (S-matrix) elements.  

S-matrix elements are used to calculate the probability of state transitions due to an 

interaction.  The method of calculating S-matrix elements from the propagation of wave 

packets falls within the framework of the CPM.  Before discussing the details of the 

CPM, a very brief introduction to scattering theory is given.  All of the scattering theory 

presented here is discussed in more detail in Taylor.94  

 In atomic/molecular scattering experiments the interaction between reactants 

takes place within a region no larger than several atomic diameters and on very short 

time-scales.  Although new ultra-fast spectroscopic techniques are beginning to probe 
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these small time-scales, nearly all of what happens within the interaction region is 

unobservable. The fundamental goal of a scattering problem is to relate the state of a 

system’s reactants well before the scattering event to the state of a system’s products well 

after the interaction.  By doing so, the initial state can be related to the possible 

experimental outcomes when the final state is measured. 

Figure 7 depicts a wave function as it propagates through the interaction region 

(shown as a grey box). 

 
 

 

Figure 7. A visualization of a wave packet as it scatters off of the interaction region 

 
 
The time  refers to a time before the interaction when the wave packet is spatially 

separated from the interaction region (has no significant probability amplitude in the 

region).  The time  refers to a time after the interaction when the wave packet has 

left the interaction region.  Both of these regions are referred to as the asymptotic limit.  

In the asymptotic limit the wave packet evolves under the influence of the asymptotic 

Hamiltonian denoted by .  The asymptotic Hamiltonian is the limit of the full 

Hamiltonian when the wave packet is spatially separated from the interaction.  By the 

time the wave packet enters the shaded interaction region of Figure 7 the full Hamiltonian 

 has lost its asymptotic character.  The choice of the time origin  is arbitrary.  A 

common choice places the wave packet well within the interaction region at .  The 
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wave packet continues to evolve as it exits the interaction region.  As the wave packet is 

spatially separated from the interaction region the full Hamiltonian again regains its 

asymptotic character.  At some time well after the wave packet has exited the interaction 

region  it is compared with a product state wave packet. 

 Figure 7 depicts a single channel scattering event—a single input wave packet 

scattering into a single output packet.  The B + H2 system has many different channels.   

The number of channels available is determined by the value of  .  For instance, if 

 then there are two possible channels to consider: 
2

1

2
1

0
0

 and 
2

1

2
3

0
0

.  Figure 8 

depicts a two channel scattering event where the incoming wave packet is defined in a 

single channel.  

 
 

 

Figure 8. A visualization of a two channel scattering event 

 
 
As the wave packet enters the interaction region, the probability amplitude of the wave 

packet is redistributed among both channels as time progresses.  Both wave packets will 

continue to propagate giving a detector a chance of measuring an outcome for either 

channel.  For  there are 20 different channels (when no vibrational transition 

occurs, ) each labeled by a different set of quantum numbers contained in   
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( Eq. ( 57 ) ).  The wave packets shown in Figure 7 and Figure 8 are one-dimensional.  

The B + H2 system has two dimensional wave packets.  The dimensions correspond to 

the Jacobi coordinates  and . 

 The reactant states of the B + H2 system are defined by forming a superposition of 

eigenstates of the asymptotic Hamiltonian ( Eq. ( 58 ) ).  The reactant state can be 

specified; however, the product state is a result of the scattering event.  The reactant and 

product states are defined as 

 

 
( 104 ) 

The TDSE, Eq. ( 98 ), prescribes how to propagate this wave packet in time.  In Eq.  

( 99 ),  the operator  is called the time evolution operator (TEO).  As shown in Eq. 

( 99 ) the TEO propagates a wave function defined at  to a time .  The TEO is 

used to propagate the reactant state through the interaction region.  The reactant state will 

eventually evolve into the product state.   

The reactant wave packet is defined as a superposition of plane waves labeled by 

 within a given channel defined by  and  given by Eq. ( 105 ). 

 

 

( 105 ) 

The expansion coefficients of this superposition of plane waves are given by 

. 
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The discussion of scattering in Taylor94 defines an initial wave packet  at 

 that when propagated to the asymptotic limit using the asymptotic Hamiltonian 

produces the reactant state of system .  In the asymptotic region  

.  Choosing an initial wave packet already localized in 

the asymptotic region eliminates this step.  The TEO is then used to propagate  

 forward in time under the influence of the full Hamiltonian to create the 

actual state of the system during the interaction .  This process is depicted in 

Figure 9. 

 
 

 

Figure 9. A depiction of how the actual state of the system  is mapped to  

 
 

When grouped together, the TEOs that accomplish the propagations depicted in 

Figure 9 are called Møller operators.  The TEO are given separately by Eqs. ( 106 ) and  

( 107 ).   

 ( 106 ) 

Eq. ( 106 ) represents the TEO under the asymptotic Hamiltonian.  The TEO under the 

full Hamiltonian is given by Eq. ( 107 ). 

 ( 107 ) 

Using Eqs. ( 106 ) and ( 107 ) the Møller operators are defined as follows. 



55 
 

 ( 108 ) 

The Møller operator that maps  to  is .  The sign in the subscript of the 

Møller operator is opposite the sign in the limit.  The Hermitian conjugate of the full 

Hamiltonian TEO is used to ensure that it propagates in the opposite time direction as the 

asymptotic Hamiltonian TEO.  The state resulting from the operation of  on  is 

called the Møller state .  

 ( 109 ) 

The Møller state  represents , the actual state of the system at . 

 Now the Møller state must be propagated forward in time to the asymptotic limit 

to determine the final state of the system  which is the product state 

.  This final state must also be mapped to a wave function defined 

at .  Both of these steps are done by applying the Møller operator  on the state 

 to give .  The state  is the state defined at  that when propagated 

forward in time under the asymptotic Hamiltonian becomes the product state.  

Eq. ( 110 )  shows how the Hermitian conjugate of the Møller operator  

switches the order of propagation. 

 

 
( 110 ) 

Now the wave packet is propagated forward in time under the full Hamiltonian and then 

propagated backward in time using the asymptotic Hamiltonian.  Thus the Møller 

operator  maps  onto .  Figure 10 depicts how this happens for .  The 

states  represent wave functions that when propagated to their respective 
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asymptotic limits map onto the asymptotic wave function of the actual state of the system 

.  These states are often referred to as the ‘in’ or ‘out’ asymptote. 

 
 

 

Figure 10. A depiction of how the actual state of the system  is mapped to  

 
 
The scattering operator  is constructed by combining both Møller operators.  

 
 

( 111 ) 

The scattering operator  maps the ‘in’ asymptote  to the ‘out’ asymptote .  

Eq. ( 111 ) can be used to calculate the probability of measuring an outcome of a 

scattering event.  This probability is expressed as 

 

 
 

( 112 ) 

In Eq. ( 112 ), the state  is the experimental outcome state.  It is chosen from the set 

of eiegnfunctions of a Hermitian operator (an observable).  For example, if an experiment 

measured the total energy of the final state after the interaction, the state  would be 

chosen from the eigenfunctions of the Hamiltonian operator.  The initial state  and 

the measurement state  can also be chosen as an eiegenstate of the asymptotic 



57 
 

Hamiltonian.  This would give the probability of system starting in the state  being 

measured in the state  after the interaction. 

 

 In the time-dependent CPM, reactant states (the channel packets) are chosen and 

propagated using TEOs.43, 44  These evolved wave packets are then compared to 

measurement wave packets defined in many channels to calculate probabilities using Eq. 

The Time-Dependent Channel Packet Method 

( 112 ).  The basis functions given by Eqs. ( 94 ) and ( 95 ) define the input and output 

channels of the scattering problem for the B + H2 scattering problem.  Wave packets are 

created within these channels. 

The asymptotic Hamiltonian for the B + H2 system can be broken into three 

pieces ( Eqs. ( 53 ), ( 54 ), and ( 55 ) ).  When considering the energy of the scattering 

experiment, it is useful to express the asymptotic Hamiltonian ( Eq. ( 46 ) ) as   

 
 

( 113 ) 

Eq. ( 113 ) groups the angular moment/spin-orbit and vibrational Hamiltonians as the 

internal Hamiltonian . The  component describes the internal rotational and 

vibrational dynamics of H2 and the spin-orbit coupling of the boron atom.  The 

eigenstates of  are the asymptotic eigenstates described by Eq. ( 57 ).  The eigenstates 

of  are plane waves labeled by the corresponding momentum .  In the coordinate 

representation  is expressed as  

 ( 114 ) 
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A superposition of plane waves is required to form a normalizable wave function.  In 

conjunction with the reduced wave function used in Eq. ( 98 ), the definition of the 

reduced momentum operator  in both the momentum and coordinate representations is 

given as (in atomic units) 

 (momentum) 

 (coordinate) 
( 115 ) 

The action of the asymptotic Hamiltonian can then be expressed as 

 

 
( 116 ) 

where  is the energy eigenvalue associated with .  The energy eigenvalue 

associated with  is .  The label  is retained on the eigenvalue because it is 

associated with a specific channel given by  

When vibrational transitions are permitted, the label  creates manifolds within 

the channel , thus multiplying the size of the basis by the number of vibrational 

transitions considered. This work will restrict H2 to the ground vibrational state (

.  However, the theory developed thus far is general enough to accommodate the 

calculation of transitions to higher order vibrational modes.  In these cases the label  

designates a channel and  designates a manifold within the channel.  There is a risk of 

entering the energy regime where boron and H2 react to form BH2 when modeling higher 

order vibrational transitions.  Modeling the reaction requires additional potential energy 

surfaces not considered in this work. 

 Each plane wave component is associated with an energy given in atomic units by 
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( 117 ) 

 Forming a superposition of plane waves serves two purposes: it creates a normalizable 

wave packet, and allows the calculation of scattering probabilities as a function of 

energy.  The initial and outcome wave packets  are constructed by forming a 

linear combination of plane waves.  Using eigenfuntions defined at  this 

superposition can be expressed as 

 

 

 

( 118 ) 

where 

 ( 119 ) 

and 

 

 

 

( 120 ) 

Eq. ( 118 ) expresses the superposition as a function of the wave number  and the 

energy .  Eqs. ( 119 ) and ( 120 ) give the relationships needed to perform this 

transformation.  Here the label  has been retained in the superscript for  

indicating that the wave packet is defined in a specific channel. The expansion 
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coefficients in Eq. ( 120 ) are chosen so that  corresponds to  and  

corresponds to .  The coefficients  are generally chosen to give a Gaussian 

function in the coordinate representation. 

 Once these states have been constructed, they can be propagated using the Møller 

operators.  Theoretically the propagation must be done over an infinite time interval; 

however, for computational purposes the wave packets must be created in and propagated 

well into the regime of the asymptotic Hamiltonian.  For the B + H2 system, this occurs 

as the electrostatic interaction potential approaches zero.   Once propagated, Eq. ( 112 ) 

can be used to calculate the probability.  However, this is not the probability of a single 

eigenstate scattering into a different eigenstate.  The states  are formed from a 

superposition of eigenstates of the asymptotic Hamiltonian.  It is possible to extract 

energy (momentum) resolved S-matrix elements—the probability of a well-defined 

energy state transitioning to another well-defined energy state.   

 

The eigenstates of the translation operator ( Eq. 

Energy Resolved S-matrix Elements 

( 114 ) ) are not proper wave 

functions since they cannot be normalized.  As a result, a superposition of these states 

was formed to create a normalizable wave packet.  The wave packet itself is not an 

eigenstate of the asymptotic Hamiltonian and does not have a well defined energy.  In 

this section the method for extracting energy (momentum) resolved S-matrix elements is 

derived.  The discussion in this section is motivated by the derivation of energy resolved 

S-matrix elements performed by Tannor and Weeks 1993.42   
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The derivation begins by examining the different propagation steps contained in 

the scattering matrix operator in the term  found in Eq. ( 112 ).  The 

superscripts  and   serve as a reminder that the initial state and the measurement state 

can be defined in different reactant/product channels.  These superscripts will be omitted 

to simplify the notation.  To simplify the notation further  will represent  and 

 will represent . 

 

 

 

 

 

( 121 ) 

Eq. ( 121 ) shows how the different propagation steps of the Møller operators can be 

separated and used to propagate the wave packets  and  to their respective 

asymptotic limits.  The remaining TEOs can be consolidated.  The limits on  and  

create a positive time interval, the propagation time .  The propagation time is given by 

 ( 122 ) 

With this new definition of time, Eq. ( 121 ) can be written as 

 

 
( 123 ) 

where the time-dependent correlation function  is defined as 
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 ( 124 ) 

The correlation function  captures the overlap between the measurement state 

 and the evolving reactant state  as a function 

of time.  When the limit as the propagation time  is taken, the result is the S-

matrix element .   

 The derivation proceeds by taking the Fourier transform of both sides of Eq.  

( 121 ) arriving at the following expression 

 ( 125 ) 

The time origin is chosen so that the propagation of  begins at .  

However, the limits of integration can be extended to earlier times since there is no 

significant overlap between  and the evolving reactant state  

 for times earlier than   Thus, Eq. ( 125 ) can be cast into a form 

easily recognized as a Fourier transform. 

 

 

( 126 ) 

The right-hand side of Eq. ( 126 ) is the Fourier transform of the correlation function.  

This can be computed numerically by propagating the reactant wave packet using the 

TEO , calculating the correlation function  for each value of , and then 
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taking the finite Fourier transform of the resulting array of points.  The right-hand side of 

Eq. ( 126 ) can be manipulated further to reveal energy-resolved S-matrix elements. 

 This is done by first expressing  in terms of the asymptotic eigenstates 

by using completeness relationships. 

 

( 127 ) 

The term  is the energy-resolved S-matrix element.  The terms 

 in Eq. ( 127 ) can be express as follow by using the definition given by 

Eq. ( 118 ). 

 

 

 

( 128 ) 

In a similar fashion, the term  can be written 

 ( 129 ) 

When Eqs. ( 128 ) and ( 129 ) are inserted into Eq. ( 127 ) the following expression is 

obtained. 

 ( 130 ) 

Eq. ( 130 ) is inserted in the right-hand expression of Eq. ( 126 ) to yield 
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( 131 ) 

The term  can be defined in the following way 

 ( 132 ) 

where  is a constant energy offset.  The integral over time now leads to a delta function 

as shown in Eq. ( 133 ). 

 ( 133 ) 

The delta function  leads to the following simplification. 

 ( 134 ) 

Eq. ( 135 ) introduce the on-shell S-matrix element  defined as 

 ( 135 ) 

The on-shell S-matrix element allows for further simplification of Eq. ( 134 ).  The right-

hand term of Eq. ( 126 ) becomes 

 ( 136 ) 

Further manipulation of Eq. ( 126 ) yields 

 ( 137 ) 

Eq. ( 137 ) can also be expressed in terms of momentum by using Eq. ( 120 ). 
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 ( 138 ) 

Energy and momentum resolved S-matrix elements can be calculated using Eqs. ( 137 ) 

and ( 138 ).  Through Eq. ( 112 ) the probability of a reactant state being measured is a 

given product state can be calculated. 

Energy resolved S-matrix elements calculated over a range of total angular 

momentum values can be used to calculate cross-sections and reaction rates. Cross-

sections are given by 

 ( 139 ) 

where  is defined in Eq. ( 117 ).   The total angular momentum  is contained within 

the state labels  and  defining the asymptotic basis set. Reaction rates can be 

calculated using the following equation. 

 ( 140 ) 

This work restricts the total angular momentum to .  Consequently cross-sections 

and reaction rates will not be calculated. 
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III. Results and Discussion 
 

The 1 2A′, 2 2A′, and 1 2A″ adiabatic PESs and DCTs used in this research were 

calculated by Dr. Dave Yarkony (Johns Hopkins University) using his suite of ab initio 

programs.  The adiabatic PESs were calculated at the SA-MCSCF/CI level.  The 

contracted basis set (13s8p3d)/[8s5p3d] was used for boron.95, 96  The contracted basis set 

(8s3p1d)/[6s3p1d] was used for hydrogen.97  This approach for the electronic structure 

calculation was used in previous work on the B + H2 system and has been validated by 

experimental endoergicity measurements.29, 45  Previous electronic structure calculations 

were carried out on a two dimensional grid given by Jacobi coordinates ; the 

coordinate  was fixed at the equilibrium value of the H2 bond length.26, 36, 37  The 

electronic structure calculation for this work was carried out for several values of the H2 

bond length making it possible to consider H2 vibrational transitions in future work.   

The Adiabatic Potential Energy Surface and Derivative Coupling Data Set 

Adiabatic PESs and DCTs were calculated at points on a three dimensional grid 

given by Jacobi coordinates .  Each point on this grid represents a given spatial 

configuration of the B + H2 nuclei.  The values of  range from zero to 10 a.u. in steps of 

0.2 a.u. for a total of 51 grid points in this coordinate.  The values of  range from zero to 

 radians in steps of  for a total of 11 grid points in this coordinate.  The values 

of  include 0.7 a.u. and range from 0.904 a.u. to 4.402 a.u. in steps of 0.5 a.u. for a total 

of 9 grid points in this coordinate.  The complete three-dimensional grid contains 5049 

points.  In Appendix F the three adiabatic PESs are plotted for the configurations with C2v 

symmetry ( ) and   symmetry ( ). 
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This grid is coarse in comparison to grids designed to characterize the topology of 

a conical intersection.   Numerical grids in these studies are typically no larger than 1 au 

distance from a conical intersection.72-76  The coarse grid introduces step-size error that 

enters into the line integral used to calculate the ADT mixing angle.  It also tends to 

under sample the sharp features that exist near conical intersections.  An example of this 

is shown in Figure 11. 

 
 

 

Figure 11. Contour plot of the derivative coupling component  for r = 0.7 au with contours starting 
at 0.1 au and spaced in 0.195 au increments 

 
 
In Figure 11 the contours begin at 0.1 au and are spaced in increments of 0.195 au.  The 

derivative coupling component  rises to a sharp peak near the collinear configuration 

for  au.  However, the peak appears to vanish for the collinear 

configuration ( ).  A sharp peak does exist in the collinear configuration, but the grid 

does not have sufficient resolution to capture it. 

   The numerical grid for this work also has regions where the nuclei are in close 

proximity.  The electronic structure calculation was not performed when two nuclei were 
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within a proximity threshold.  The proximity threshold was set to 0.699 au for H–H 

distances and 1.17 au for H–B.  An energy ceiling of 0.2707 au was established for these 

regions.  These regions have no impact on the dynamics of the system for small energies. 

Aside from these omissions, the raw data had other noticeable blemishes as 

shown in Figure 12. 

 
 

 

Figure 12. A slice of the  adiabatic PES for  au adiabatic PES showing two noticeable 
outlying points 

 
 
Figure 12 is a slice of the  adiabatic PES surface for  au.  In this slice there 

are two obvious outlying points.  The figure also has a mesa-like structure where the 

proximity threshold of 0.2707 au was applied.  It is not known how these points 

converged to these values, nor was it possible to recalculate the data at these points.  The 

data for outlying points were interpolated using a low-order polynomial fitting function 

and compared with neighboring values to ensure continuity. 

The raw DCT data also had numerical artifacts that were corrected.  The DCTs 

were numerically determined to an arbitrary phase factor.  Since the PESs and DCTs are 
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real valued, this phase factor resulted in an arbitrary sign being assigned to a value.  The 

correction of this phase error is described by Belcher.98  An attempt was made to identify 

outlying points in the phase-corrected NACT data.  This was abandoned since it is 

difficult to distinguish an outlying point from the naturally sharp features that exist in the 

DCT data.  In Appendix G a selection of DCT surfaces are presented. 

 

 The electronic structure code required Cartesian coordinate inputs.  In Cartesian 

coordinates, the B + H2 system has 9 DOF; three Cartesian coordinates for each nuclei.  

These coordinates can be transformed to a new set of coordinates which consist of three 

coordinates for the CM, three Euler angles, and three internal coordinates.  The internal 

DOF of are described by the Jacobi coordinates R, the distance between the boron atom 

and the hydrogen molecule CM; r, the bond length of the hydrogen molecule; and θ, the 

polar angle between the axis containing the boron atom and the axis containing the 

hydrogen atoms.  This is shown in 

The Cartesian-to-Jacobi Coordinate Transform 

Figure 3. 

In the absence of external fields the PESs and NACTs are not dependent on SF 

coordinates, and without loss of generality the B + H2 system can be restricted to the SF 

xz plane.  The orientation of the B + H2 configuration in the plane is given by the BF 

internal coordinates, a single Euler angle, and the coordinates of the B + H2 CM.  Table 1 

lists the Cartesian and SF/BF coordinates used. 

 
 
 
 



70 
 

Table 1. The Cartesian and SF/BF coordinates used to specify nuclear configurations for the electronic 
structure calculation 

Cartesian Coordinates SF/BF Coordinates 
  

  

  

  

  

  
 
 
The relationship between these coordinates is illustrated in Figure 13. 

 
 

 

Figure 13. The geometrical relationship between Cartesian coordinates and Jacobi coordinates for the B + 
H2 system 

 
 
The B + H2 system lies within the plane defined by the SF X and Z axes.  The internal 

Jacobi coordinates r, R, and θ are the same described in Figure 3.  The vector  is given 

by the Cartesian components  and points to the CM of the B + H2 system.  The 
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CM has been displaced for clarity. The angle ω is the polar angle with respect to the SF Z 

axis.  The transformation between these coordinates is given by the following equations: 

 

 

 

 

 

 

( 141 ) 

The electronic structure calculation is invariant with respect to the location of the 

CM and the Euler angle ω.  Hence, only three coordinates are required to specify the 

internal configuration of the B + H2 system.  The numerical calculation was simplified by 

defining a new set of coordinate axes shown in Figure 13 as  and .  The boron atom 

is located at the origin of the  and  axes.  One of the hydrogen atoms is fixed on the 

 axis, while allowing the other hydrogen atom to move freely in the plane as internal 

coordinates changed. 

 The NACTs also had to be transformed from Cartesian coordinates to Jacobi 

coordinates.  As defined in Eq. ( 21 ), the DCTs involve partial derivatives with respect to 

nuclear coordinates.  This complicates the coordinate transformation.  To obtain the 

NACTs as functions of internal Jacobi coordinates the Cartesian partial derivatives must 

be transformed to partial derivatives with respect to internal Jacobi coordinates.  An 

example of this is given in Eq. ( 142 ) for the internal Jacobi coordinate R. 

 

 
( 142 ) 
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Eq. ( 142 ) uses the chain rule to express the partial derivative operator  as the sum 

partial derivate operators with respect to Cartesian coordinates.  The chain rule can be 

expressed for all of the partial derivatives via the following matrix equation. 

 ( 143 ) 

The matrix of partial derivatives in Eq. ( 143 ) transforms the partial derivative with 

respect to Cartesian coordinates to partial derivatives with respect to internal Jacobi 

coordinates.  However, the coordinate transformation equations ( Eq. ( 141 ) ) cannot be 

inverted analytically.  Consequently, it is not possible to obtain analytic expressions for 

the expressions in the transformation matrix of Eq. ( 143 ).  The coordinate 

transformation equations can be used to express the following chain rule relation. 

 ( 144 ) 

The matrices in Eq. ( 143 ) and ( 144 ) are inverses of one another as shown in the next 

equation. 

 ( 145 ) 

The transformation was accomplished by using Eq. ( 141 ) to compute the matrix of 

partial derivatives with respect to Cartesian coordinates.  This matrix was inverted and 

used to compute the proper transformation to Jacobi partial derivatives. 

 



73 
 

 With properly transformed DCTs, the line integral, Eq. 

Path Dependence of the ADT Mixing Angle 

( 35 ), can be carried out 

to determine the ADT mixing angle.  Eq. ( 35 ) was derived under the assumption that the 

diabatic derivative couplings would be negligible.  This was enforced by setting  

in Eq. ( 33 ).  The condition that  must be curl-free ( Eq. ( 36 ) ) followed from this 

assumption.  Under these conditions the line integral is expected to be path independent.  

However, as discussed earlier, truncating the electronic basis set ignores residual 

coupling between the 1 2A′, 2 2A′, and 1 2A″ electronic eigenstates that span the 2P 

manifold and electronic eigenstates outside the 2P manifold.  This has the effect of 

introducing a transverse component into  ( Eq. ( 39 ) ).53, 56  This component is not 

removed by the ADT, invalidating the key assumption used to derive Eq. ( 35 ).  Hence 

the error introduced by this component is termed nonremovable error.  

 This nonremovable derivative coupling also invalidates the curl-free condition as 

shown by Eq. ( 41 ).  Consequently, the line integral is no longer expected to be path 

independent.  To examine the path dependence of the line integral, two different paths 

were chosen.  Both paths use the same starting point of  

au.  Path A integrates along the internal Jacobi coordinates in the following order: r, R , 

and θ.  Path B integrates along the order θ, r, and R.  Both paths end at the point labeled 

. Figure 14 illustrates these two paths. 
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Figure 14. Depiction of Path A (solid line) and B (dashed line) within the 3-dimensional coordinate space 
defined by the Jacobi coordinates r, θ, and R 

 
 
Figure 15 and Figure 16 compare these two paths for nuclear configurations for which 

.  This value of  was chosen to avoid the step size error in the derivative 

couplings illustrated in Figure 11.  Path B integrates along the  direction of  for the 

collinear direction and is influenced by the step size error.  Figure 15 plots the ADT 

mixing angle  as a function of the Jacobi coordinate  along the line where  

and  au.  The black circles in Figure 15 indicate the line integral passed through 

regions where the electronic structure calculation was not performed.   
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Figure 15. A comparison of the ADT mixing angle γ calculated from the line integral using Path A (solid 
line) and Path B (dashed line) along the line where  and  au 

 
 
Path A (solid) and Path B (dashed) are nearly identical in this figure indicating that the 

contribution of the transverse component of  is small in this region.   

Figure 16 plots the ADT mixing angle  as a function of the Jacobi coordinate  

along the line where  and  au. 

 
 

 

Figure 16. A comparison of the ADT mixing angle γ calculated from the line integral using Path A (solid 
line) and Path B (dashed  line) along the line where  and  au 
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In Figure 16 the paths are nearly identical for values of .  The paths diverge for 

smaller values of .  It is not clear from the figure which path is more adversely affected 

by the transverse component, nor is the true value of the ADT mixing angle known. 

In general, when R is large both paths are nearly identical for all values of the H2 

bond length r.  As R decreases the paths diverge as r becomes large.  The path difference 

indicates the presence of the transverse component of .  This was further confirmed by 

calculating the curl of . 

 
 

 
Figure 17. The magnitude of the curl of the derivative coupling vector field for  au 

 
 
Figure 17 shows the total magnitude of the curl of  for the plane where  au.  

The curl was not calculated for points along the boundary of the data set.  The curl is 

non-zero which is another indication, according to Eq. ( 41 ), of the presence of a non-

zero transverse component of .  However, Eq. ( 41 ) does not indicate the magnitude 

of the transverse component. 
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The transverse and longitudinal components of  can be computed using the 

following definitions found in Chapter 6 of Jackson’s Classical Electrodynamics (3rd 

Ed.)68: 

 

 

( 146 ) 

This decomposition was not performed given the under-sampled features in the NACTs.  

An accurate determination of  would require the electronic structure calculation to be 

performed on a denser numerical grid.  

 

Expected Behavior of the ADT Mixing Angle and the Diabatic Surfaces

The effect of  can be further characterized by starting and ending the line 

integral at points where the true value of the ADT mixing angle is known.  Using 

arguments given by Alexander26, 27, the ADT mixing angle can be predicted for certain 

symmetry configurations of B + H2.  While Alexander’s data was restricted to the 

equilibrium H2 bond length r, these arguments are valid for all values of r. 

  

The diagonal diabatic PESs , , and  obey the same symmetry relationship 

that the adiabatic PESs obey: .  The diabatic coupling surface 

 is different.  In the range  the center-of-charge of the H2 molecule lies 

closest to the lobe of positive phase of the 2p orbital perpendicular to BF Z axis while for 

 the center-of-charge lies closest to the lobe of negative phase.  Thus, the 

diabatic coupling surface  obeys the symmetry relation .  
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This requires that  to maintain the continuity of .  

According to Eq. ( 38 ), this requires the ADT mixing to be zero or  for  and 

.26  The value of the ADT mixing angle is set by examining the behavior of the 12A′ 

and 22A′ PESs. 

As stated earlier the 12A′ and 22A′ orbitals can be chosen to correspond to the pz 

and px orbital of the boron atom respectively.  The ADT given by Eq. ( 31 ) can be seen 

as an orthogonal rotation of these orbitals in the SF XZ plane, where the orientation of the 

H2 molecule influences the magnitude of the rotation.  When the B + H2 system has C2v 

symmetry ( ) the 1 2A′ and 2 2A′ adiabatic PESs do not cross.  This is illustrated in 

Figure 18. 

 
 

 

Figure 18. A plot of the 1 2A′ (solid line) and 2 2A′ (dashed line) adiabatic PESs for C2v geometry and  
r = 1.402 au 
 
 
In Figure 18 the solid line corresponds to the 1 2A′ PES and the dashed line corresponds 

to the 2 2A′ PES.  This figure can be compared with the upper plot in Figure 3 in 

Alexander.26  As the boron atom approaches the H2 molecule in the perpendicular 
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geometry the px and pz do not change orientation.  Since the 1 2A′ and 2 2A′ adiabatic 

PESs do not cross the 1 2A′ PES maintains the pz orbital orientation and the 2 2A′ 

maintains the px orbital orientation.  The ADT mixing angle is constant, here taken to be 

zero for all values R along the line where  and r = 1.402 au.   

For the collinear configuration (  and r = 1.402 au),  symmetry, the 1 2A′ 

and 2 2A′ adiabatic PESs appear to meet near  as shown in Figure 19.  Again the 

solid and dashed lines correspond to the 1 2A′ and 2 2A′ PESs respectively.  This figure 

can be compared with the lower plot in Figure 3 in Alexander.26  If the numerical grid in 

Figure 19 were more densely sampled the PESs would touch at a single point. 

 
 

 

Figure 19. A plot of the 1 2A′ (solid line) and 2 2A′ (dashed line) adiabatic PESs for  geometry and  
r = 1.402 au 
 
 
This is an example of a conical intersection.  As the PESs approach au each 

undergoes a sharp change in slope.  The slope of the 1 2A′ PES surface as it approaches 

au from the left most closely matches the slope of the 2 2A′ PES surface as it 

continues to greater values of R.  Likewise, the slope of the 2 2A′ PES surface as it 
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approaches au from the left most closely matches the slope of the 1 2A′ PES 

surface as it continues to greater values of R.  The orientations of the 1 2A′ and 2 2A′ wave 

functions undergo a sharp change near au.  For  au the 1 2A′ wave 

function corresponds to the pz orbital.  For  au the 1 2A′ wave function 

corresponds to the px orbital.  The 2 2A′ wave function undergoes a similar transition.  

This sharp transition is the source of the singularity in the DCTs in this region. 

The goal of the ADT is to remove this singularity.  Figure 19 suggests that this can 

be done by choosing the ADT mixing angle so that the resulting diabatic PESs for the 

collinear configuration are associated with the same orbital.  This eliminates the sharp 

change in orientation thereby eliminating the derivative coupling in the diabatic basis.  

This is accomplished by setting the ADT mixing angle equal to  radians where the px 

state lies energetically below the pz state ( au), and setting the angle to zero 

where the pz state lies energetically below the px state ( au).26  The result of this 

transformation is shown in Figure 20. 

 
 

 

Figure 20. A plot of the  (solid line ) and  (dashed line) diabatic PESs for  geometry and  
r = 1.402 au 
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In Figure 20 the solid and dashed lines correspond to the  and  PESs respectively.   

After the transformation wave functions associated with  and  correspond entirely 

to the px and pz orbitals respectively.  There is no sharp orientation change in the diabatic 

wave functions thus the derivative coupling term is eliminated. 

With the behavior of the ADT mixing angle established for C2v and  

geometries the effect of  on the ADT mixing can be further characterized by 

performing the line integral along a path that begins in a C2v configuration and ends in a 

 configuration.  A C2v configuration is chosen as a starting point since value of the 

ADT mixing angle zero for all C2v configurations.  This eliminates the requirement of 

choosing a single reference point for the line integral.  This path is illustrated in Figure 

21. 

 
 

 

Figure 21. An illustration of the line integral path chosen to take advantage of symmetry derived boundary 
conditions 
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The line integral is performed starting at  and ending at  for every value of 

R for a given value of the H2 bond length.  Figure 22 presents the results of the ADT 

mixing angle calculated using the path described in Figure 21 for  au and 

.  The dot-dash lines indicate zero and  levels of the ADT mixing angle.  The 

black dots indicate the line integral passed through regions where the electronic structure 

calculation was not performed.  Figure 22 has a step-function-like transition between zero 

and  near  a.u. as expected from Figure 19; however, the sharp features 

immediately before and after the transition are due to step-size error.   

 
 

 

Figure 22. The ADT mixing angle calculated using the line integral starting at  and ending at 
 for  au  

 
 
Figure 22 also shows a deviation from  for  au and a deviation from zero 

.  These deviations are due to contributions of  to the line integral.   

Figure 23 presents another example of how the transverse component can affect 

the line integral.  Here the line integral is carried out for  au and . 
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Figure 23. The ATD mixing angle calculated using the line integral starting at  and ending at 
 for  au 

 
 
For this value of r and  the 1 2A′ and 2 2A′ wave functions do not experience a rapid 

change in orientation.  The ATD mixing is expected to remain .  As shown in Figure 

23 angle has a value near ; however, as  gets smaller it smoothly deviates from 

.  This is a dramatic manifestation of the nonremovable component of the derivative 

coupling vector field.   

In general for the  plane, for  au the ADT mixing angle 

transitions from  to zero at some point as R becomes smaller for the collinear 

configuration.  The jagged features near these transitions are due to step size error in the 

DCTs as discussed earlier.  However, the smooth deviations from zero and  are due 

to the nonremovable component of the derivative coupling error.  This error dominates 

the ADT mixing angle  au, and is illustrated in Figure 23. 

The ADT mixing angle passes on the errors introduced by to the diabatic 

surfaces.  This is clearly seen in the  diabatic PES.   Figure 24 shows the  PES 
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calculated for  au bond length.  The diabatic coupling surface is not zero along 

the line  as predicted by symmetry arguments.  Figure 24 demonstrates that the 

error introduced into the diabatic PESs can be energetically significant.   

 
 

 

Figure 24. The diabatic coupling surface  for  au calculated using the ADT mixing angle 
determined by the line integral starting at  and ending at  

 
 
The deviation from zero is on the order of 0.01 au.  The scattering calculation discussed 

later probes energies in the range of zero to 0.01 au.  This deviation will adversely impact 

the molecular dynamics calculated using these surfaces. 

 

 Unless the derivative coupling vector field  is decomposed into its longitudinal 

and transverse components the contribution of the transverse component to the ATD 

mixing angle cannot be removed. As mentioned earlier, this decomposition was not 

attempted in this work due to the under-sampled features in the NACTs.  As the line 

integral is performed error from  is accumulated along the path with the points 

Weighted-Path Line Integral  
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furthest from the reference point suffering the most contamination.  The symmetry 

derived boundary conditions helped mitigate this error by reducing the length of the path 

required to make a determination of the ADT mixing angle.  The path described in Figure 

21 involved a single integration along a path in the  component of the derivative 

coupling vector field.  This integration scheme, however, did not prevent the error 

displayed in Figure 24.  

The line integral determines the ADT mixing angle up to an overall constant .  

A single starting point is selected to ensure this constant is the same for all 

determinations of the ADT mixing angle for a given data set.  The symmetry derived 

boundary conditions provide a way to begin the line integral from multiple points while 

setting the overall constant consistently across the data.  The direction of the integration 

in Figure 21 can be reversed provided the symmetry derived boundary conditions are 

used to set the constant appropriately.  When this is done the value of the ATD mixing 

angle is set properly in the  plane and the integral accumulates error along the path 

to the  plane.  Each path accumulates the same magnitude of error at the end of 

the path. 

For clarity, Path 1 is defined as the path that begins in the  plane and 

ends in the  plane.  Path 2 begins in the  plane and ends in the  plane.  

These two paths can be used to define a weighted-path line integral using the following 

equation: 

 ( 147 ) 
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In Eq. ( 147 )  and  are the ADT mixing angle calculated along Path 1 and 2 

respectively.  A linear weighting is used to emphasize the contribution of each path in the 

region where it has accumulated the least error.  Figure 25 illustrates these three paths. 

 
 

 

Figure 25. The ADT mixing angle plotted as function of  for Path 1 (solid line), Path 2 (dashed), and the 
weighted path (dash-dot) for  au and  au 

 
 
Figure 25 plots the ADT mixing angle for the path corresponding to  au and 

 au.  Path 1 (solid line) is set to the symmetry derived value of zero at , 

but fails to reach the expected value of  at .  Path 2 (dashed line) is set to 

the symmetry derived value of  at , but fails to reach the expected value of 

 at .  Paths 1 and 2 have accumulated the same magnitude of error at the 

end of each path.  The weighted path (dash-dot) is obtained from Eq. ( 147 ).  While the 

weighted path has the correct symmetry derived boundary conditions, it is not known to 

what extent the accumulated error is mitigated.  Figure 15 and Figure 16 indicate that the 

transverse component  is not evenly distributed throughout the data set. 
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 The weighted-path line integral approach was used to calculate the ADT mixing 

angle for the entire data set.  Only Path 1 was used when regions where the electronic 

structure calculation was not performed were encountered.  Figure 26  shows the  PES 

calculated for  au bond length this time using the ADT determined by the 

weighted-path line integral. 

 
 

 

Figure 26. The diabatic coupling surface  for  au constructed using ADT mixing angle 
calculated from the weighted-path line integral 

 
 
Unlike Figure 24, the diabatic coupling surface  is now zero along the line   The 

weighted-path line integral successfully corrects the deviations from the symmetry 

derived boundary condition; however, it is sensitive to step-size error in the data.  This is 

illustrated in the next series of figures.  The diabatic coupling surface  displayed in 

Figure 27 has a step-size induced error along the line  near . 
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Figure 27. The diabatic coupling surface  for  au constructed using ADT mixing angle calculated 
from the line integral starting at  and ending at  

 
 
This diabatic surface was the result of an ADT determined by integration using only  

Path 1.  The derivative coupling surface for the component  for  is shown in 

Figure 28 to illustrate the source of this step-size error. 

 
 

 

Figure 28. The derivative coupling surface for the component  for  au 

 
 
The sharp discontinuity near in  au is indicative of a conical intersection.  The  

component of the derivative coupling surfaces was interpolated using a cubic spline fit in 
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an unsuccessful effort to alleviate step-size error.  The grid of nuclear coordinates does 

not sample these sharp features well enough for interpolation to be of any benefit.  The 

cubic spline fit did not model the shape of the discontinuity along  well.  The next figure 

illustrates the effect the discontinuity near R = 8 au in Figure 28 has on the diabatic 

surface constructed from the ADT determined by the weighted-path line integral over the 

uninterpolated derivative couplings. 

 
 

 

Figure 29. The diabatic coupling surface  for  au constructed using ADT mixing angle calculated 
from the weighted-path line integral 

 
 
Figure 29 shows that the weighted-path line integral performed well in the regions where 

the derivative coupling term is smooth.  However, according to Eq. ( 147 ) Path 2 is 

weighted more heavily than Path 1 near .  Path 1 is affected by the discontinuity in 

the DCT and carries this error through the path.  All regions affected by this step-size 

error were smoothed using cubic spline interpolation as shown in Figure 30. 
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Figure 30. The smoothed diabatic coupling surface  for  au constructed using ADT mixing angle 
calculated from the weighted-path line integral 

 
 
A selection of diabatic surfaces constructed using the ADT determined from the 

weighted-path line integral are presented in Appendix H. 

 

 The diabatic PESs are required to represent the electrostatic interaction potential 

 in the asymptotic basis.  Eqs. 

Diabatic Potential Energy Surface Fitting 

( 74 ), ( 75 ), and ( 76 ) express the analytical 

representation of  in the asymptotic basis.  This representation includes the expansion 

coefficients  which are determined from a numerical fit to the diabatic PESs.  

In Eq. ( 88 ) the diabatic PES are expressed as an expansion in terms of reduced Wigner 

rotation matrix elements, Eq. ( 87 ).  The expansion coefficients are calculated 

numerically by fitting each diabatic PES to the appropriate reduced Wigner rotation 

matrix.  The relationship between the expansion coefficients  and the reduced 

Wigner rotation matrices is given by Eqs. ( 84 ) and ( 87 ).  The reduced Wigner rotation 
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matrix elements are generated by using the following relationship with the associated 

Legendre polynomials83, 99: 

 

 
( 148 ) 

An analytic expression is derived for each expansion coefficient.  This process is shown 

for  as an example.  The  PES is fit using the  reduced matrix element given 

by 

 

 

( 149 ) 

Inserting Eq. ( 149 ) into Eq. ( 88 ) yields 

 ( 150 ) 

Both sides of Eq. ( 150 ) are then multiplied by  and integrated over  

from  to  to yield 

 
( 151 ) 

The associated Legendre polynomials have the following orthogonality relationship: 

 ( 152 ) 

The orthogonality relationship simplifies Eq. ( 151 ) to 
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 ( 153 ) 

Since the data was only calculated for  between 0 and  the symmetry properties of 

each surface with respect to  was used to extend each surface to .  The  

has odd symmetry with respect to  the values of  change sign when reflected 

about this plane.  The other potential energy surfaces have even symmetry with respect to 

this plane.  The analytic expressions for the expansion coefficients of these surfaces are 

given by  

 

 

 

( 154 ) 

These integrals are performed along the  direction for each  pair.  In Eqs. ( 153 ) 

and ( 154 ) the  symbols have been replaced with  symbols.  This work calculated fit 

coefficients for  to be directly comparable to the surfaces calculated by 

HIBRIDON™, a suite FORTRAN programs used to calculate Alexander’s B + H2 

surfaces.26, 100  

The number oscillations a given associated Legendre polynomial experiences 

increases as  increases.  Beyond a limiting value of   the finite grid is no longer able 

to sample the oscillations.   This aliasing limits the order of the associated Legendre 

polynomials that can be accurately projected on the numeric grid.  An example of this is 

shown in Figure 31.  Although the solid line clearly represents , when it is sampled 
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using the  grid used in this work (dashed line) it appears to be .  The  grid is marked 

with an asterisk. 

 
 

 

Figure 31. The associated Legendre polynomial  plotted on a finely sampled grid (solid) and the grid 
used in this work (dashed) with grid points indicated by an asterisk 

 
 
Associated Legendre polynomials with orders higher than  are aliased on the  

grid used in this work.  Furthermore, the accuracy of the fit coefficients steadily 

decreases as  increases due to step-size error in the integration of Eqs. ( 153 ) and  

( 154 ).  This is illustrated in Figure 32.  In Figure 32 the RMS fitting error for  is 

plotted as a function of the fit order  for .  The RMS error 

decreases for the first three values of , but steadily increases to the first alias peak. 
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Figure 32. RMS fitting error of  calculated as a function of fit order for  au 

 
 
This effect can be reduced by interpolating the diabatic PESs along  on a more densely 

sampled grid and then performing the fit.  Unlike the DCTs, the diabatic PESs vary 

slowly along  as illustrated in Figure 33. 

 
 

 

Figure 33. The diabatic PES  (asterisks) interpolated using a piecewise cubic Hermite polynomial (solid 
line) plotted as a function of  for  au 
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The asterisks mark the points where the electronic structure calculation was carried out.  

The solid line is a piecewise cubic Hermite polynomial interpolation of the data.  Figure 

34 is a comparison of the RMS error for the interpolated and non-interpolated data. 

 
 

 

Figure 34. A comparison of the RMS fitting error of the non-interpolated data (+) and the interpolated  
data (x) 
 
 
As shown in Figure 34, the RMS error of the interpolated data (+) is less affected by step-

size error in Eqs. ( 153 ) and ( 154 ).  The diabatic PESs were interpolated along the  

direction before calculating the fit coefficients.  Figure 35 plots a selection of these 

coefficients which is directly comparable with Figure 6 of Alexander.27 

 
 



96 
 

 

Figure 35. A selection of  expansion coefficients plotted as a function of  

 
 
For Figure 35 the sign of the  coefficient was chosen to be consistent with 

Alexander’s of  ( Eqs. ( 89 ) and ( 90 ) ).  The values of the expansion coefficients are 

comparable to Alexander.  The expansion coefficients were then inserted into Eq. ( 92 ) 

to yield the  expansion coefficients required in Eq. ( 74 ) to represent the 

electrostatic interaction potential in the asymptotic basis. 

 

 As implied by Eq. 

Determining the H2 Potential Energy Surface  

( 79 ), the diabatic PESs capture the effects of the electrostatic 

interaction potential  and the H2 PES .  For this work the contribution of  

was not removed from the adiabatic or diabatic PESs.  As a result the contribution of the 

H2 PES must be removed from the , Eq. ( 92 ), expansion coefficients to 

calculate  properly.  The H2 PES also appears as a term in the effective PES matrix 

elements given by Eq. ( 97 ).  The minimum value of  is also used to set the overall 
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offset of the data so that  au.  This allows the results of this work to 

compared with Alexander26 and Weeks.37 

 The contribution of  can be isolated by examining the asymptotic behavior 

of the diabtic PESs.  The diabatic PESs have the following limits: 

 

 
( 155 ) 

In the asymptotic limit the contribution of  goes to zero leaving only the contribution 

of .   Consequently the coupling surface  goes to zero while the other diabatic 

PESs converge to  as  gets large.  Likewise the fitting function  also coverges 

to  while  converges to zero.  Thus the expansion coefficients  in Eq.  

( 92 ) go to zero in the asymptotic limit as expected. 

 An accurate determination of  requires the adiabatic PESs to be calculated 

for a variety of values of the H2 bond length in the asymptotic limit (large R).  Figure 36 

plots the expansion coefficient  near R = 10 as function of R for r = 1.402 au 

along with an exponential fit to this data.  Figure 36 demonstrates that the asymptotic 

limit has not been reached by R = 10 and that  for large R.  The 

values of the fit coefficients for  exhibit a near exponential decay near 

. 
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Figure 36. The expansion coefficient V000(r, R) near R = 10 plotted as a function of R for r = 1.402 au (dots) 
with an exponential fit to these points (solid line) 

 
 
The last eight points (  au) were fit using a least squares fit with following 

exponential fitting function: 

 ( 156 ) 

The coefficient  captures the value of the fit coefficient in the asymptotic limit.  This fit 

is shown in Figure 36 as a solid line.  The asymptotic values of  obtained this way 

are used to the global energy offset of the PESs so that  au.  Figure 

37 compares these values with the theoretical Morse potential values and ab initio 

determined LSTH (Liu-Siegbahn-Truhlar-Horowitz)101, 102 values.  The values of  

obtained using the exponential fit of the  expansion coefficient (asterisk) are 

comparable to the Morse potential (dashed), but more closely follow the LSTH values 

(solid). 
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Figure 37. A comparison of LSTH (solid), Morse potential (dashed), and the asymptotic expansion 
coefficient  (asterisk) values for  

 
 

The values of   must be interpolated to match the grid used for the effective 

PESs ( Eq. ( 97 ) ).  Since  for this work is only sampled at nine points, the method 

of interpolation must be chosen carefully.  Figure 38 compares three methods for fitting 

the H2 PES in the asymptotic limit for the range  au. 

 
 

 

Figure 38. A comparison of three methods for fitting the H2 PES in the asymptotic limit: cubic spline 
(solid), piecewise cubic Hermite (dashed), Morse fitting function (dash-dot),  data (asterisk) 
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Overall, the least squares fit using a Morse potential fitting function (dash-dot) had the 

most residual error since it was not constrained to the data (asterisk).  The cubic spline 

(solid) and piecewise cubic Hermite polynomial (dashed) interpolation curves are nearly 

equal for  au.  All three methods have difficulty fitting the well region located 

near  au.  Only the piecewise cubic Hermite polynomial curve preserves the 

value of zero at  au.  The cubic spline curve shifts the location of the minimum 

value of the potential well.  The piecewise cubic Hermite polynomial curve was selected 

to construct  in the asymptotic limit.  Future determinations of adiabatic PESs for 

other systems should include calculations made in the asymptotic limit. 

 

 The diabatic effective PESs were generated using Eq. 

Effective Potential Energy Surfaces  

( 97 ).  A FORTRAN code 

was developed to read fit coefficient data; construct and interpolate the H2 PES ; 

interpolate the fit coefficients using cubic spline interpolation to yield data for any user 

specified grid of nuclear coordinates; generate the diabatic effective PESs on the user 

specified grid; and, diagonalize the diabatic effective PESs matrix at each value of  

forming adiabatic effective PESs. 

 A selection of diabatic effective PESs are presented in Appendix I.  Figure 39 

compares the  au values of the first 14 diagonal diabatic effective PESs with 

those produced by HIBRIDON™.100  Comparisons made with HIBRIDON™ are made 

using Eq. ( 90 ) as the definition of .  This does not affect the diagonal elements of 

, nor does the sign of the off-diagonal elements affect the dynamics. 



101 
 

 
 

 

Figure 39. The first 14 diagonal matrix elements of  for  au: the results of this work 
(solid line), the results produced by HIBRIDON™ (dashed line) 

 
 
The surfaces plotted in Figure 39 correspond to the  values of the H2 rotor.  The 

potential well for the HIBRIDON™ surfaces is lower in energy; however, the surfaces 

share the same H2 rotor energy spectrum as  becomes large.  This indicates that the 

global offset has been chosen and applied properly.  The H2 rotor levels are split by spin-

orbit coupling.  Figure 40 plots the effective PESs corresponding to j = 0 on a smaller 

scale so that the differences between the HIBRIDON™ surfaces and this work might be 

more clearly observed. 
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Figure 40. The first two diagonal matrix elements of  for  au corresponding to j = 0: 
the results of this work (solid line), the results produced by HIBRIDON™ (dashed line) 

 
 
As shown in Figure 40, the effective PESs calculated by HIBRIDON™ have deeper 

potential wells which occur at smaller values of R.  This comparative behavior is typical 

of the effective PESs for higher j. 

Figure 41 compares the off-diagonal elements of the first row of  with 

those produced by HIBRIDON™. 

 
 

 

Figure 41. The off-diagonal matrix elements of  corresponding to  and 2 (the single  
surface is indicated): the results of this work (solid line), results produced by HIBRIDON™ (dashed line) 
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The single off-diagonal surface corresponding to  is marked in Figure 41.  The other 

surfaces correspond to .  While the off-diagonal surfaces are similar in form to those 

calculated by HIBRIDON™, there are significant differences.  The differences observed 

in Figure 40 and Figure 41 will affect the resulting scattering matrix elements calculated 

from these surfaces.  This will be explored in the next section.   

Effective PES matrix element are represented by an n-by-n matrix in the 

asymptotic basis where n is the number of basis functions ( Eq. ( 98 ) ).  This matrix can 

be diagonalized via a similarity transformation at each  value ( Eq. ( 102 ) ) to yield 

a diagonal set of adiabatic effective PESs as shown below. 

 

( 157 ) 

The adiabatic effective PESs are the eigenvalues of the effective PES matrix.  These 

eigenvalues and are ordered in ascending order.  A selection of these surfaces is 

presented in Appendix J. 

 The adiabatic effective PESs display avoided crossings similar to those 

encountered in the electronic adiabatic surfaces (Figure 19).  An example of these 

crossings is shown in Figure 42. 
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Figure 42. A slice along  au of the first (solid line) and second (dashed) adiabatic effective PESs 

 
 
In Figure 42 a slice along  au of the first and second adiabatic effective PESs is 

plotted.  This slice has surface crossings near  and  au.  At this time it is not 

known if these crossings share similar properties to the conical intersections encountered 

in electronic adiabatic PESs, nor is it known how these crossing influence the dynamics 

of the system. 

 

 The diabatic effective PES data for  au was extracted and used in 

conjunction with code developed by Weeks37 to calculate scattering matrix elements via 

the CPM.  The code uses the SOA to propagate wave packets into the interaction region 

and back.  Absorbing boundary conditions (BCs) are used to prevent the reflected wave 

packets from exiting the propagation grid and aliasing.  The absorbing BCs allow the 

smaller propagation grid to accommodate longer propagation times.  

Scattering Matrix Elements 

Table 2 lists the 

numerical parameters used to calculate the scattering matrix elements. 
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Table 2. Parameters used in the 1D propagation of wave packets 

Item Value (au) 

Coordinate grid size 256 
Coordinate grid spacing 0.3 
Number of time steps 250 000 
Time step size 25 
Initial wave packet position 25 
Initial wave packet momentum 5 
Initial wave packet spread 0.5 
Amplitude of absorbing BC 0.001 
Spread of absorbing BC 15 

 
 
These are the same propagation parameters used in Weeks.37  The next figures compare 

scattering matrix elements for transitions out of the state  

 
 

 

Figure 43. Transition probabilities as a function of energy for the transition  
: results from this work (solid line), results based on PESs produced by HIBRIDON™ 

(dashed line)  
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Figure 44. Transition probabilities as a function of energy for the transition  
: results from this work (solid line), results based on PESs produced by HIBRIDON™ 

(dashed line) 
 
 
The scattering matrix elements shown Figure 43 and Figure 44 are characterized by broad 

smoothly varying Stueckelberg oscillations103 which are interrupted by rapidly oscillating 

Feshbach resonances104 near energy values of 0.0015 and 0.0055 au.  While the transition 

probabilities have similar structure qualitatively, these figures show that both the 

Stueckelberg oscillations and the Feschbach resonances are sensitive to changes in the 

input diabatic effective PESs.   

The Feshbach resonances occur at energies corresponding to the vibrational 

eigenvalues of the weakly bound B  H2 van der Waals complex.37  As shown in Figure 

45 the Feshbach resonances are shifted to higher energies than those based on 

HIBRIDON™ surfaces.  This is consistent with the difference in potential well depths of 

the diagonal effective PESs.  On average the potential well depth for the first 20 diagonal 

diabatic effective PESs in this work is  au higher in energy than the 

HIBRIDON™ data set.   This has the effect of raising the vibrational eigenvalues of the 

weakly bound B  H2 van der Waals complex.    
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Figure 45.  A plot of the Feshbach resonance region of the transition the transition  
: results from this work (solid line), results based on PESs produced by HIBRIDON™ 

(dashed line) 
 
 
The shape of the Feshbach resonances is also different.  This is largely due in to the 

differences in the off-diagonal coupling terms (Figure 41).  The Feshbach resonances are 

also sharper for the HIBRIDON™ data set.  This suggests that the shallower well 

structure observed in Figure 40 does not trap evolving wave packet amplitude for as long.  

The wave packet amplitude exiting the interaction region makes contributions to the 

correlation function (see Eqs. ( 124 ) and  ( 138 ) ) for smaller durations leading to 

broader features in the scattering matrix elements. 

The shapes of the potential wells influence the phase of the Stueckelberg 

oscillations.  As seen in Figure 43 and Figure 44, the maxima of the Stuekelberg 

oscillations calculated in this work occur at larger energies compared to those of the 

HIBRIDON™ data set.  As the reactant wave packet enters the interaction region it 

experiences an effective PES with a different shape than the surfaces based on the 

HIBRIDON™ data set.  During the interaction the evolving wave packet explores 
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different regions of the other effective PESs before exiting the interaction region.  The 

differences in the shape of the effective PESs is primarily responsible for the phase 

differences in the Stuekelberg oscillations.  The complicated interaction of the evolving 

wave packet with multiple effective PESs makes it difficult to predict a priori how 

changes in the effective PESs will affect the resulting scattering matrix elements.  It is 

also not known how changes in the effective PESs affect the calculated cross sections and 

reaction rates.  
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IV. Conclusion 
 

 The diabatic and adiabatic effective PESs for the inelastic collision of a boron 

atom with a hydrogen molecule ( Eq. ( 1 ) ) were calculated from the 1 2A′, 2 2A′, and A″ 

adiabatic electronic PESs and the associated DCTs.  The processing steps leading to the 

effective PESs are outlined in Table 3. 

 
 

Table 3. Processing steps for obtaining effective PESs 

 Processing Steps 
1. Ab initio calculation of electronic adiabatic PESs and 

DCTs 
2. Smooth electronic adiabatic PESs 
3. Apply Cartesian-to-Jacobi coordinate transformation to 

derivative couplings 
4. Calculate ADT mixing angle using weighted-path line 

integral 
5. Construct electronic diabatic PESs 
6. Smooth step-size induced error in electronic diabatic PESs 
7. Fit electronic diabatic PESs to associated Legendre 

polynomials 
8. Isolate asymptotic behavior and set global data offset 
9. Interpolate fit coefficients to user defined grid 

10. Construct diabatic effective PESs 
11. Diagonalize diabatic effective PES matrix elements to 

construct adiabatic effective PESs  
 
 
The adiabatic electronic surfaces were calculated at the SA-MCSCF/CI level including 

the H2 bond length as a DOF.29, 45, 46  The derivative couplings were calculated directly 

from the SA-MCSCF/CI wave functions using analytic gradient techniques.29, 47  The 

electronic structure calculation was not attempted for nuclear configurations with 

internuclear distances below a set threshold.  In addition to these regions, the raw data set 
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contained points which did not converge to values near their neighboring points.  In the 

process of performing the electronic structure calculation a metric based on the continuity 

of the angular momentum of the system was used to gauge convergence.  There were a 

small number of points that met this metric but did not converge properly.  These 

outlying points were smoothed in the electronic adiabatic surfaces; however, no attempt 

was made to smooth the derivative coupling surfaces due to their naturally spiky 

topology.  Each outlying point was identified individually and smoothed.   

After the DCTs were transformed from Cartesian to Jacobi coordinates the ADT 

mixing angle was calculated by performing a line integral through the derivative coupling 

vector field ( Eq. ( 35 ) ).  When the ADT mixing angle was first calculated the standard 

approach of choosing a single reference point for the line integral was used.  The 

resulting line integral was not path independent as assumed when deriving Eq. ( 35 ).  

Residual coupling between boron 2P states and other states not considered in this work 

give rise to a transverse component of the derivative coupling field.53, 56  This component 

introduces an error which accumulates along the line integral path—the nonremovable 

error.   

This error has been characterized in regions in close proximity to conical 

intersections by integrating over a closed path. 72-76  When the path does not enclose a 

conical intersection the path integral should be zero.  When a conical intersection is 

enclosed the resulting mixing angle should be  where the integer n is the number of 

enclosed conical intersections.6, 67  The deviation from these values is a measure of the 

nonremovable error.   
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This work represents the first effort to characterize this error for a wide range of 

nuclear coordinates.  The path independence of the line integral is one measure of the 

influence of the nonremovable error.   As shown in Figure 15, not all regions in the data 

are strongly affected by this error.  Previously published results on B + H2 for  

au lie in a region weakly affected by this error (Figure 22).26, 27  Path integrals in regions 

where  au have significant path dependence (Figure 16).  The curl of the 

derivative coupling vector field further verifies the presence of a non-zero transverse 

vector field.  However, the path independence of the line integral is not an absolute 

measure of the nonremovable error.  In this work, the symmetry of B + H2 is used to 

predict the true value of the ADT mixing angle, providing an absolute measure of the 

contribution of the nonremovable error for the collinear and perpendicular nuclear 

configurations. 

Symmetry derived boundary conditions allow the line integral to begin at any 

point at which the ADT mixing angle is known.  This allows the overall length of the 

path to be reduced thereby limiting the amount of accumulated error.  The ADT mixing 

angle was calculated by integrating over the  component of the derivative coupling field 

and using boundary conditions to set the proper offset.  This technique does not prevent 

significant error from accumulating (Figure 23).   This error is passed on to the diabatic 

PESs (Figure 24). 

The ADT mixing angle can only be predicted for specific nuclear configurations 

with special symmetry.  Furthermore, the nonremovable error is not equally distributed 

through the data set (Figure 17).  This prevents the contribution of the nonremovable 

error from being removed at each point along the path.  For the B + H2 system, the 



112 
 

symmetry derived boundary conditions allow two paths to be taken through the same 

data.  The results of these line integrals can be averaged giving weight to regions less 

affected by the nonremovable error.  While this does not eliminate the contribution of this 

error, the weighted-path line integral enforces the proper boundary conditions (Figure 

26).  This work introduces the weighted-path line integral as a method of producing more 

accurate diabatic PESs.  The technique shows promise for systems with a high degree of 

symmetry and can aid the calculation of diabatic PESs for systems with a larger number 

of nuclei. 

The weighted line integral is also sensitive to step-size error introduced by the 

finite grid of coordinates.  The derivative coupling surfaces are most affected by this 

error due to the sharp features that they can possess (Figure 28).  The nuclear grid used in 

this work under sampled these sharp features (Figure 11).  Consequently, efforts to 

reduce this error by interpolating the derivative coupling data set were unsuccessful.  Step 

size error was smoothed by masking the points and using cubic spline interpolation.   

 The smoothed diabatic PESs were fit using associated Legendre polynomials 

which in turn yielded the expansion coefficients required to construct the matrix elements 

of the electrostatic interaction potential .  The asymptotic behavior of the system was 

modeled by using a least squares fit with an exponential fitting function for  

au.  The predicted H2 PES surface agrees with the LSTH surface.101, 102  Piecewise cubic 

Hermite polynomial was used to interpolate the H2 PES in the asymptotic limit.  The 

resulting surface was used to account for the contribution of the hydrogen molecule in the 

full Hamiltonian ( Eq. ( 60 ) ) as well as subtract its influence in the  expansion 

coefficient ( Eq. ( 92 ) ). 
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 A FORTRAN code was developed to interpolate the expansion coefficients to a 

user defined grid.  The diabatic effective PESs ( Eq. ( 97 ) ) were calculated on this grid.   

20 basis functions (all basis up to and including ) were used to compute the matrix 

elements .  The data corresponding to  au was extracted from 

these matrix elements and compared to values calculated by HIBRIDON™.  The surfaces 

showed good agreement in shape and magnitude.  The matrix elements  

were diagonalized at each  value to yield adiabatic effective PESs.  These surfaces 

exhibit surface crossings similar to those encountered in the electronic adiabatic surfaces 

(compare Figure 19 with Figure 42); however, it is not known if they share similar 

properties associated with conical intersections. 

 Finally, the values of the diabatic effective PESs for  au were used in 

the same one dimensional CPM method code developed by Weeks et al.37 to compute 

scattering matrix elements.  The resulting scattering matrix elements exhibit Stuekelberg 

oscillations103 and Feshbach resonances104 shifted to higher energies than those based on 

the HIBRIDON™ data set.37  The scattering matrix are sensitive to the form of the input 

effective PESs (Figure 43 and Figure 44).  The difference in the well depths of the 

diabatic effective PESs affect both the Stuekelberg oscillations and Feshbach resonances. 

 

 This work presents the adiabatic PESs and DCTs of the B + H2 system calculated 

over an extended range of nuclear coordinates over all three internal nuclear DOF (boron 

distance, H2 orientation, and H2 bond length).  Previous ab initio calculations of the 

adiabatic PESs for the B + H2 system fixed the molecular hydrogen bond length at the 

Summary of Key Contributions 
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equilibrium value of 1.402 a.u. 26, 27, 36, 37  The DCTs were used to calculate the ADT 

mixing angle.  Previous used other methods to estimate the ADT.26, 27  The error 

introduced by employing a truncated set of adiabatic states was characterized by 

examining the path dependence of the line integral and using symmetry derived boundary 

conditions.  The weighted-path line integral was employed as a new method for reducing 

the effect this error has the resulting diabatic PESs.  The procedure for determining the 

 expansion coefficients was modified to account for variable H2 bond length.  The 

two dimensional diabatic and adaiabtic effective PESs were calculated.  The effective 

PESs data was extracted for  au and used to calculate scattering matrix 

elements using the CPM.  These results were compared with previous results in the first 

attempt to observe the sensitivity of this calculation to the input electronic structure data. 

 

 This work lays the foundation for many significant research endeavors.  

Recommendations for Future Work   

Table 4 

summarizes the significant extensions of this work. 

 
 

Table 4. A list of further research topics 

 Future Work 
1. Relax centrifugal sudden approximation 
2. Relax pure precession approximation 
3. Extend asymptotic basis beyond  
4. Implement 2D propagation in CPM 
5. Examine the sensitivity of scattering matrix elements, 

cross sections, and reaction rates to input PESs  
6. Allow vibrational transitions ( ) 
7. Calculate diabatic B + H2 surface for  au using 

non-NACT techniques 
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 The CS approximation was implemented in this work to reduce the computational 

overhead.  Relaxing the CS approximation will require significant changes to the code 

used to compute the effective PESs and calculate the scattering matrix elements.  Once 

implemented, a comparison can be made between CS and non-CS scattering matrix 

elements to determine the error introduced by this approximation. 

 Relaxing the pure precession approximation (constant spin-orbit coupling 

coefficient ) requires a new set of electronic adiabatic PESs to be calculated.  This effect 

must be included as a relativistic correction in the electronic structure code.  Once 

accomplished, the error introduced by the pure precession approximation can be assessed. 

 The equations for cross-sections and reaction rates ( Eqn. ( 139 ) and ( 140 ) ) 

require the asymptotic basis to be extended beyond a total angular moment of .  

Although the asymptotic Hamiltonian is diagonal with respect to total angular 

momentum, extending the basis set will greatly increase the computational resources 

required to compute each total angular momentum block. 

 The computational requirements will also greatly increase when implementing 2D 

propagation in the CPM code.  Once implemented the dynamical effects of the surface 

crossings observed in Figure 42 can be studied.  There is further interest in observing 

how the added DOF, , affects the Feshbach resonances and Stuekelberg oscillations 

observed in the transition probabilities (Figure 43 and Figure 44).  2D propagation could 

also serve as another measure of the sensitivity of the scattering matrix calculation.  It 

would also be possible to study the sensitivity of the scattering matrix calculation by 

examining an analytic potential, such as the Morse potential.  The parameters of an 
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analytic potential could be varied and the effect on the resulting scattering matrix could 

be studied. 

 Once the 2D propagation code has been implemented, vibrational transitions can 

be considered.  Considering energies in this range also opens up the possibility that boron 

will react forming BH2.  The full treatment of the reaction requires PESs of the BH + H 

complex; however, reaction probabilities can be estimated by measuring the probability 

amplitude that exits the propagation grid for small . 

 The results of this work indicate that the nonremovable error made a greater 

contribution to the ADT mixing angle for H2 bond lengths  au.  The B + H2 

surfaces calculated by Alexander were calculated for  au.26, 27    Thus the 

calculation of the B + H2 diabatic PESs for  au using methods that do not use 

DCTs would be valuable for determining how these methods are affected by the 

nonremovable error.   This would also provide a way to further judge the utility of the 

weighted-path line integral approach to calculating the ADT mixing angle.  
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Appendix A The Antihermitian Property of the Derivative Coupling Terms 
 

The DCTs given by Eq. ( 21 ) can be shown to be antihermitian.  This important 

property reduces the number of DCTs that must be computed. The derivation of this 

property begins by taking the gradient with respect to nuclear coordinates on both sides 

of Eq. ( 14 ), the orthonormality condition of the electronic eigenstates. 

 

The gradient  will pass through the integral and after using the product rule the 

following expression is obtained: 

 

When  Eq. ( 21 ), the definition of the derivative coupling term , is substituted  into 

this expression the antihermitian relationship is obtained: 
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Appendix B The Derivation of the Generalized Hellmann-Feynmann Theorem 

 

The generalized Hellmann-Feynmann theorem, Eq. ( 27 ), gives the clearest 

indication when a system will behave nonadiabatically.  It shows that when the difference 

between the adiabatic PESs for two different electronic eigenstates is small, the 

derivative coupling  will be large, possibly singular if the PESs are equal. 

The Hellman-Feynman theorem establishes the following relationship 

 

where  is a Hermitian operator,  is a normalized eigenstate, and  is the 

corresponding eigenvalue all of which depend on the real valued parameter .106  This 

equation involves a single eigenstate and eigenvalue, thus if  were 

expressed as a matrix it would be diagonal.  To compare two different eigenstates and 

eigenvalues the generalized Hellmann-Feynman must be used. 

The electronic TISE defined by Eq. ( 12 ) serves as the starting point for this 

derivation.  In the expression above,  is a collection of real parameters.   These 

parameters correspond to the nuclear coordinates n in Eq. ( 12 ).  The derivative 

operator  corresponds to .  The derivation proceeds as follows: 
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The derivatives with respect to nuclear coordinates are then taken on both sides and the 

product rule is used to expand the left hand side of the equation. 

 

The definition of the DCTs , Eq. ( 21 ), is then used to further simplify the expression. 

 

After using antihermitian property of the DCTs derived in Appendix A, the general 

Hellman-Feynman theorem is given by 
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Appendix C The Effects of CS Symmetry on Coupling Terms 
 

Eq. ( 29 ) uses the result that only orbitals with the same symmetry will have non-

zero coupling terms.  This can be understood by examining the form of the coupling 

terms within the context of CS symmetry.  As shown in Figure 1 and Figure 2, functions 

with A′ CS are even functions with respect to inversion of electronic coordinates while 

functions A″ CS  are odd functions with respect to the same inversion.  An integral of an 

odd (A″ CS) function over a symmetric interval about the origin is zero.  In Eqs.  

( 21 ) and ( 22 ) both integrals are over electronic coordinates; however, the operators  

and  involve derivatives with respect to nuclear coordinates.  If the resulting function 

under the integral sign is odd, then the integral will be zero. 

It can be shown that the operators  and  do not change the symmetry of a 

function.  An example of this is expressed in the following equation:  

 

The expression states that a function with A′ operated on by  yields a function with A′ 

symmetry.  If  were expanded in a Taylor expansion each term of the Taylor 

expansion must have symmetry properties consistent with the symmetry of the entire 

function.  A simple example of this is the sine and cosine functions.  A Taylor expansion 

of the sine function yields only terms with odd symmetry while an expansion of the 

cosine functions yields only terms with even symmetry.  In the case of electronic 

eigenstates like , a multivariable Taylor expansion will result in various products 

of nuclear and electronic coordinates.  When the operators  and  are applied to the 
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expansion, the electronic coordinates will be treated as constants and thus will not be 

affected by the operation.  This means the symmetry of each term in the expansion will 

remain the same with respect to electronic coordinates.  Thus the function resulting in the 

operation maintains the same symmetry properties with respect to electronic coordinates 

as the original eigenstate. 

Given that the functions resulting from the operators  and  maintain the 

same symmetry as the original function, it is straightforward to determine symmetry of 

the function being integrated in Eqs. ( 21 ) and ( 22 ).  The product of two functions 

which both have either A′ CS or A″ CS will result in a function with A′ CS symmetry and 

the resulting integral will be non-zero.  The product of a function with A′ CS and a 

function with A″ CS will result in a function with A″ CS and the resulting integral will be 

zero.  Thus coupling terms involving eigenstates with different symmetry will be zero. 
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Appendix D The Derivation of the ADT Mixing Angle 

 

 The ADT transformation given by Eq. ( 31 ) introduced the ADT mixing angle 

.  The mixing angle must be chosen so that the derivative couplings in the diabatic 

basis  are negligible.  The definition of derivative couplings in the adiabatic basis  

are given by Eq. ( 21 ) as 

 

The functions  and  will be chosen to be real-valued functions.  

By choosing real-valued functions, the antihermitian property of the derivative couplings  

( Eq. ( 24 ) ) implies that diagonal DCTs are zero 

 

Furthermore, the states with A′CS symmetry will not mix with the state with A″CS 

symmetry.  This eliminates all but the  and  DCTs which are related to each other 

via the antihermitian property. 

 First, the transformation given in Eq. ( 31 ) is inverted to yield the adiabatic states 

in terms of the diabatic states. 

 

 

To allow for a more compact notation the functional dependence on nuclear and 

electronic coordinates is assumed.  These equations are inserted into Eq. ( 21 ) to yield 

the following integral 
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When multiplied out, the integral has eight terms as shown below 

 

The terms that depend only on nuclear coordinates can be pulled outside the integral.  

The terms   and  lead to diagonal DCTs when integrated 

and are thus zero.  When the orthonormailty condition, Eq. ( 14 ), is applied terms like 

 will integrate to unity while terms like  will integrate to zero.  When 

these simplifications are made the expression above becomes 
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After using the antihermitian property of the DCTs and applying standard trigonometric 

identities the expression simplifies to 

 

Thus when  is set to zero Eq. ( 34 ) is obtained. 

 

The equation gives rise to the line integral, Eq. ( 35 ), yielding the ADT mixing angle 

 for each nuclear configuration. 
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Appendix E The Symmetry of the Electrostatic Interaction Potential 
 

The symmetry of the H2 molecule influences the structure of the electrostatic 

interaction potential when represented in the asymptotic basis.  Because H2 is a 

homonuclear diatomic molecule, when considering H2 in the BF frame with the Jacobi 

coordinate θ, all functions containing this variable must have the property 

.  Thus when considering the diabatic PESs  , , and   given by Eqs. ( 88 ) 

only expansion coefficients  where  is even will be non-zero.  The 

coefficients for odd values of  vanish due to the following propery of the reduced 

Wigner rotation matrix elements26: 

 

For  , , and , μ is either 0 or 1.  Thus when  is odd the sum  is also odd 

causing a change in polarity.  

Similarly, the coefficients for odd values of  for  will also vanish due to the 

requirement that  vanish when .  This requirement is a consquence of the 

polarity of the boron 2p orbitals coupled by .  As described in detail by Alexander26, 

the sign of  will flip as .  Given that μ is unity for , odd values of  lead 

to an even sum .  This does not change the polarity as required.  Therefore, all 

expansion coefficients for odd  vanish for  as well. 

 Knowing that  will on take on even values, the property of 3-j symbols 

described by Eq. ( 81 ) will determine which angular momentum states  couple with one 

another.  Since  will always be even,  and  must both be either odd or even for to 
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have a non-zero expansion coefficient.  As a result, there are two subsets of states: even 

valued  states, and odd valued  states.  States from one of these subsets will not couple 

with a state in the other subset. Therefore, states with even and odd  can be considered 

separately.91  States with even values of  correspond to parahydrogen and odd values 

correspond to orthohydrogen.  For this work only parahydrogen states are considered.  

This reduces the number of states that can be included in the basis due to the desire to 

keep the rotational energy below the energy required to excite the first vibrational mode 

of the H2 molecule.  
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Appendix F The Adiabatic PESs of B + H2 
 

 In this section the adiabatic PESs of the B + H2 system are presented for the 

configurations with C2v symmetry ( ) and   symmetry ( ).  The PESs are 

presented as a function of  and .  Each surface is rendered in a 2D color plot which 

captures the entire surface at-a-glance.  Each 2D plot is accompanied by a 3D rendering 

to assist in visualizing the shape of the surface.  The PESs were rendered on a grid 601 x 

601 points using cubic spline interpolation.  For energy values greater than 0.2707 au the 

PESs display wavy features caused by ringing from the cubic spline interpolation.  The 

PES values were mapped to a color palette containing 200 values with bins ranging from 

the minimum value of the PES to the maximum value.  The color scale of the 2D and 3D 

renderings are identical for a given PES orientation.  The figures begin on the next page. 
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Figure 46. The 2D color rendering of the adiabatic PES  

 

 

Figure 47. The 3D rendering of the adiabatic PES  
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Figure 48. The 2D color rendering of the adiabatic PES  

 

 

Figure 49. The 3D rendering of the adiabatic PES  
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Figure 50. The 2D color rendering of the adiabatic PES  

 

 

Figure 51. The 3D rendering of the adiabatic PES  
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Figure 52. The 2D color rendering of the adiabatic PES  

 

 

Figure 53. The 3D rendering of the adiabatic PES  
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Figure 54. The 2D color rendering of the adiabatic PES  

 

 

Figure 55. The 3D rendering of the adiabatic PES  
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Figure 56. The 2D color rendering of the adiabatic PES  

 

 

Figure 57. The 3D rendering of the adiabatic PES  
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Appendix G The Derivative Coupling Surfaces of B + H2 
 

 In this section the components of the derivative coupling vector field are 

displayed as a function of  and  for .  To illustrate the jagged features that 

can exist in DCTs no attempt is made to interpolate these surfaces. 

 

 

 

Figure 58. The derivative coupling surface for the component  for  
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Figure 59. The derivative coupling surface for the component  for   

 

Figure 60. The derivative coupling surface for the component  for   
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Appendix H The Diabatic PESs of B + H2 
 

In this section the diabatic PESs of the B + H2 system are presented for .  

The PESs are presented as a function of  and .  Due to the symmetry derived boundary 

conditions, diabatic PESs for the configurations with C2v symmetry ( ) and   

symmetry ( ) are identical to their adiabatic counterparts.  The diabatic coupling 

surface  is zero for these configurations as well.  Furthermore, the single surface with 

A″ CS symmetry does not mix with other surfaces.  As a result the adiabatic  and 

diabatic  PES are equal.   

Each surface is rendered in a 2D color plot which captures the entire surface at-a-

glance.  Each 2D plot is accompanied by a 3D rendering to assist in visualizing the shape 

of the surface.  The PESs were rendered on a grid 601 x 601 points using cubic spline 

interpolation.  For energy values greater than 0.2707 au the PESs display wavy features 

caused by ringing from the cubic spline interpolation.  The PES values were mapped to a 

color palette containing 200 values with bins ranging from the minimum value of the PES 

to the maximum value.  The color scale of the 2D and 3D renderings are identical for a 

given PES orientation.  The figures begin on the next page. 
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Figure 61. The 2D color rendering of the diabatic PES  

 

 

Figure 62. The 3D rendering of the diabatic PES  
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Figure 63. The 2D color rendering of the diabatic PES  

 

 

Figure 64. The 3D rendering of the diabatic PES  
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Figure 65. The 2D color rendering of the diabatic PES  

 

 

Figure 66. The 3D rendering of the diabatic PES  
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Appendix I The Diabatic Effective PESs of B + H2 
 

In this section a selection of diabatic effective PESs of the B + H2 system are 

presented.  The PESs are presented as a function of  and .  Each surface is rendered in 

a 2D color plot which captures the entire surface at-a-glance.  Each 2D plot is 

accompanied by a 3D rendering to assist in visualizing the shape of the surface.  The 

PESs were rendered on a grid 601 x 601 points using cubic spline interpolation.  For 

energy values greater than 0.2707 au the PESs display wavy features caused by ringing 

from the cubic spline interpolation.  The PES values were mapped to a color palette 

containing 200 values with bins ranging from the minimum value of the PES to the 

maximum value.  The color scale of the 2D and 3D renderings are identical for a given 

PES orientation.  The figures begin on the next page. 
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Figure 67. The 2D color rendering of the diabatic effective PES  

 

 

Figure 68. The 3D rendering of the diabatic effective PES  
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Figure 69. The 2D color rendering of the diabatic effective PES  

 

 

Figure 70. The 3D rendering of the diabatic effective PES  
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Figure 71. The 2D color rendering of the diabatic effective PES  

 

 

Figure 72. The 3D rendering of the diabatic effective PES  
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Figure 73. The 2D color rendering of the diabatic effective PES  

 

 

Figure 74. The 3D rendering of the diabatic effective PES  
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Figure 75. The 2D color rendering of the diabatic effective PES  

 

 

Figure 76. The 3D rendering of the diabatic effective PES  
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Figure 77. The 2D color rendering of the diabatic effective PES  

 

 

Figure 78. The 3D rendering of the diabatic effective PES  
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Appendix J The Adiabatic Effective PESs of B + H2 
 

In this section a selection of adiabatic effective PESs of the B + H2 system are 

presented.  The PESs are presented as a function of  and .  Each surface is rendered in 

a 2D color plot which captures the entire surface at-a-glance.  Each 2D plot is 

accompanied by a 3D rendering to assist in visualizing the shape of the surface.  The 

PESs were rendered on a grid 601 x 601 points using cubic spline interpolation.  For 

energy values greater than 0.2707 au the PESs display wavy features caused by ringing 

from the cubic spline interpolation.  The PES values were mapped to a color palette 

containing 200 values with bins ranging from the minimum value of the PES to the 

maximum value.  The color scale of the 2D and 3D renderings are identical for a given 

PES orientation.  The figures begin on the next page. 
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Figure 79. The 2D color rendering of the first adiabatic effective PES 

 

 

Figure 80. The 3D rendering of the first adiabatic effective PES 
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Figure 81. The 2D color rendering of the 10th adiabatic effective PES 

 

 

Figure 82. The 3D rendering of the 10th adiabatic effective PES 
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Figure 83. The 2D color rendering of the 20th adiabatic effective PES 

 

 

Figure 84. The 3D rendering of the 20th adiabatic effective PES 
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